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PRACTICAL OUTPUT-FEEDBACK RISK-SENSITIVE CONTROL
FOR STOCHASTIC NONLINEAR SYSTEMS WITH STABLE
ZERO-DYNAMICS*

YUN-GANG LIUT AND JI-FENG ZHANGH

Abstract. This paper addresses the design problem of practical (or satisfaction) output-feedback
controls for stochastic strict-feedback nonlinear systems in observer canonical form with stable zero-
dynamics under long-term average tracking risk-sensitive cost criteria. The cost function adopted
here is of the quadratic-integral type usually encountered in practice, rather than the quartic-integral
one used to avoid difficulty in control design and performance analysis of the closed-loop system. A
sequence of coordinate diffeomorphisms is introduced to separate the zero-dynamics from the entire
system, so that the transformed system has an appropriate form suitable for integrator backstepping
design. For any given risk-sensitivity parameter and desired cost value, by using the integrator
backstepping methodology, an output-feedback control is constructively designed such that (a) the
closed-loop system is bounded in probability and (b) the long-term average risk-sensitive cost is upper
bounded by the desired value. In addition, this paper does not require the uniform boundedness of
the gain functions of the system noise. Furthermore, an example is given to show the effectiveness
of the theory.
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1. Introduction. Research on global stabilization control design for nonlinear
systems has been accelerated over the last two decades. After the celebrated charac-
terization of the feedback linearizable systems (see [13]), a breakthrough was achieved
with the introduction of the integrator backstepping design methodology (see [20]),
which provides a general constructive tool for designing global stabilization controls
for nonlinear systems in or feedback equivalent to strict-feedback form. Since the early
1990s, a series of research results on strict-feedback systems have been obtained by
using this methodology together with other design tools, such as nonlinear damping,
tuning functions, and MT filters (see, e.g., [8], [15], [18], [19], [22], [23], [32], [34],
and [38]).

The research on risk-sensitive control can be traced back to the early 1970s, when
Jacobson introduced the linear exponential quadratic Gaussian (LEQG) problem (see
[14]). Then, Whittle put a risk-sensitivity parameter into the cost, and solved the
linear discrete-time problem (see [39]). Bensoussan and van Schuppen considered
the continuous-time case in their paper [4]. But the significance of the risk-sensitive
control was not fully realized until the 1990s. It has been known that risk-sensitive
control is more general than H, control and Hs control, and closely related to differ-
ential game problems (see, e.g., [9], [10], [17], [31], [37], and [40]). For example, when
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the noise vanishes, the large deviation limit of the risk-sensitive control is nothing
but a deterministic differential game problem. These connections have initialized and
accelerated the research on stochastic risk-sensitive controls over the last decade.

The design of controls for strict-feedback stochastic nonlinear systems has received
intense investigation recently (see, e.g., [1], [5], [6], [7], [11], [26], [27], [28], [29], [33],
and [35]), where [7], [11], and [33] considered full state-feedback control design, and
[1], [5], [6], [26], [27], [28], [29], and [35] considered output-feedback control design.
Under the assumption (A), “the disturbance vector field vanishes at the origin,” [5],
[7], and [11] studied the problem of designing a control to asymptotically stabilize the
closed-loop systems in the large. Meanwhile, [1], [6], [26], [27], [28], [29], [33], and [35]
considered the control design to achieve the boundedness in probability of the closed-
loop system without using assumption (A). Specifically, [7] considered the disturbance
attenuation problem; [35] considered the stabilization problem of systems with stable
zero-dynamics; [33], [26], [1], and [29] considered the design of satisfaction control
under a quadratic, a quartic regulation, and a quadratic tracking risk-sensitive cost
criterion, respectively. [1] used the assumption (B), “the gain functions of stochastic
noise are uniformly bounded,” while [26], [29], and [33] did not; [27] and [28] consid-
ered the reduced-order observer-based stabilization control design of the single-input
multioutput stochastic nonlinear systems.

This paper studies the problem of output-feedback control design for a class of
stochastic nonlinear systems in observer canonical form with stable zero-dynamics un-
der a quadratic tracking risk-sensitive cost criterion. In general, the design of output-
feedback control is more difficult and challenging than that of full state-feedback
control. Since the early 1990s, a general framework for studying output-feedback
control problems has been developed. The key thought is to first introduce the so-
called information state, which is a generalization of observer or filter, and then, by a
measure transformation, to change the output-feedback control design problem into a
full state-feedback problem of an augmented system (see, e.g., [2], [3], [12], [16], and
[17]). However, generally speaking, the equality (or inequality) of the information
state satisfied is infinite-dimensional, to which an explicit finite-dimensional solution
exists only for linear or special nonlinear systems (see [2]). The method of this paper
is different from the information state one and can be used to deal with more general
inherently nonlinear systems. The objective of this paper is very practical: to search
for a satisfaction control rather than an optimal one. This makes it possible to avoid
the measure transformation. In order to get the explicit formula of the control, strict-
feedback nonlinear systems are considered. The main results of this paper indicate
that for any given risk-sensitivity parameter and desired tracking risk-sensitive cost
value, a dynamic output-feedback control can always be constructively designed so
that the closed-loop system is bounded in probability and the long-time average risk-
sensitive cost is upper bounded by the desired value. While [1] considered assumption
(B) to be essential, the current paper does not use this assumption. In addition, the
value range of the characteristic parameter of the value function used for backstepping
design is enlarged from 2 (see [26]) to set (3, 1). This provides control designers with
a freedom in choosing the value function.

The remainder of the paper is organized as follows. Section 2 provides some no-
tation. Section 3 describes the system model and formulates the control objective
to be studied. Section 4 describes the constructive design procedure of the control
by employing an integrator backstepping approach, and presents several important
lemmas for the closed-loop performance analysis. Section 5 addresses the main results
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of this paper. Section 6 gives a simulation example to illustrate our theoretical find-
ings. Section 7 gives some concluding remarks. The paper ends with two appendices.
Appendix A introduces the definitions of stability notions asymptotically stable in the
large and bounded in probability, and gives a key theorem of sufficient conditions for
the solvability of the control problem. Appendix B provides some technical lemmas
that play an important role in the control design and performance analysis.

2. Notation. Throughout this paper, N denotes the set of all natural numbers;
R denotes the set of all real numbers, and R™ denotes the real n-dimensional space,
n € N; C' denotes the set of all functions with continuous partial derivative up to
ith order, ¢ € N, and C*> denotes the set of all smooth functions; for a given vector
or matrix W, we use W' to denote its transpose; Tr(W) denotes its trace when
W is square, i.e., the sum of all elements on the main diagonal line; we use |W/| to
denote the absolute value for scalar numbers, and ||W|| to denote the Euclidean norm
for vectors and the corresponding induced norm for matrices; we also introduce the
Frobenius norm of W defined by ||W|r = /Tr(WTW) with properties: ||[W] <
IWr and |WV|r < [W||V|F for any matrix V' with appropriate dimension; for
any z € R", x; denotes its ith element, z; denotes the column vector consisting of
the first 4 elements of 2 in the original order, i.e., z;) = [x1,... ,z;]T; for any given

1th continuously differentiable function y4(t), yc(;) (t) denotes the ith derivative with
respect to the time variable ¢, the first and second derivatives are denoted by 7, and
ija, respectively, and y([;] denotes the (i + 1)-dimensional column vector consisting
of yq, yd,...,yc(;), ie., yg] = [yd,yd,yd,...,yg)]T. Obviously, xpy) = z1, o[ = =,
ygo] = yq. 0;x; denotes the (i x j)-dimensional matrix with all zero elements and will
be written as 0 for brevity when there is no confusion caused. We use I; to denote
the i x ¢ identity matrix. For a set A, I, denotes the characteristic function of the
set. For any given symmetric matrix P, Apax(P) and A\pin(P) denote its maximum
and minimum eigenvalue, respectively.

In addition, when a function shows up for the first time, we will clearly write out
its arguments, and then, for simplicity of expression in later use, we sometimes drop
the arguments when no confusion is caused.

For a given stochastic system
de = f(t,x)dt + h(t,z)dw, x(to) = o,

define a differential operator L :

_OV(t,x)  OV(t, x) 1 0%V (t, ) T
where z is an n-dimensional state vector, n € N; f : [0, co) x R* — R"™ and

h: [0, co) x R* — R"*s s € N, are assumed to be continuous in ¢ and locally
Lipschitz in x; w is an s-dimensional vector-valued Brownian motion defined on a
probability space (2, F, P); and V : [0, o0) x R* — R is C! in ¢t and C? in z.

3. Problem formulation.

3.1. System model. We consider the stochastic nonlinear systems in observer
canonical form with zero-dynamics of the form (see [35]):
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dzy = zo dt + f1(y) dt + hy(y) dw,

dz,—1 =z, dt + fp—1(y) dt + hp—1(y) dw,
(3.1) dz, = 2,1 dt + f,(y) dt + bg(y)udt + h,(y) dw,

dxn—l = Tn dt + fn—l(y) dt + blg(y)U'dt + hn—l(y) dw7
day, = fu(y) dt + bog(y)udt + hy(y) dw,

Yy=x,

where © = [z1,...,7,]" is the n-dimensional state vector, n € N, and its initial
value z(tg) = xg is fixed but unknown; u is the scalar control input; y is the scalar
measurable output; f; : R — R, i=1,...,n, are the system nonlinearities depending
only on output y; h; : R — R'5 ¢ =1,...,n, are the gain functions of the system
noise depending only on y, s € N; g : R — R is the nonlinear gain function of the
control input u depending only on y; w € R® is a vector-valued standard Brownian
motion defined on probability space (2, F, P), with Q being a sample space, F being
a filtration, and P being the probability measure, s € N; m € N satisfies 0 < m < n;
and p =n —m € N is the relative degree of the system.

The main results of this paper are based on the following assumptions:

A1. The nonlinear functions f; and h; (i = 1,...,n) are smooth. That is, f; € C*
and h; € C°°; the nonlinear function g is continuous; and, for any y € R,
9(y) #0.

A2. All the roots of the polynomial b,,s™ + - -+ + b1 s + bg, b, # 0, have negative
real parts.

A3. Desired system output gy, is deterministic, and it and its derivatives gg, - - - , y((f )
are known and bounded; i.e., there exist known positive constants C ),
i=0,...,p, that bound the reference trajectory y4 and its derivatives.

Assumption Al is standard for this class of control problems, to ensure that f;
and h; (i = 1,...,n) are local Lipschitz functions and, together with assumption A3,
to ensure the global boundedness of h;(yq) (i = 1,...,n). Assumption A2 ensures
that the zero-dynamics are stable.

Unlike the problem of feedback stabilization, there is no need to require that the
origin x = 0,x1 be the equilibrium point of the open-loop system. This is because
the purpose of the tracking control is to make the system output conform to the
time-varying desired system output y,4(t), rather than to steer the system state to the
origin £ = 0y, x1.-

3.2. Control objective. The goal of control design is to make the solution
process of the system (3.1) be bounded in probability and the following quadratic
tracking risk-sensitive cost criterion achieve a predefined long-term cost value:

T
(3.2) Jo(y) = lijr}l_?olip% %ln (E (exp (Z /o (y — ya)? dt))).

That is, for any given positive cost value R; (arbitrarily close to zero), the risk-sensitive
cost Jp(y) is not greater than R;, where 6 is called the risk-sensitivity parameter and
y — yq is called the output tracking error. When 6 > 0, the cost function weights
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heavily the large deviation of y — y4 through the exponential operator, which leads to
a risk-averse control design problem. The greater the value of 8, the more conservative
is the controller. Actually, by the value of 8, the risk-sensitive problem can be classified
(see [10] and [31]) as follows: (i) when 6 > 0, it is a risk-averse problem; (ii) when
6 < 0, it is a risk-seeking problem; (iii) when § — 0, the cost function converges to a
standard integral cost, and so it is known as a risk-neutral problem.

In this paper, we will study only the case where 6 is positive.

For convenience of expression, we give the following definition.

DEFINITION 3.1. For a given positive risk-sensitivity parameter 8, a controller u
is said to achieve a guaranteed risk-sensitive cost Ry (R; > 0) if the following inequality
holds for the output of the closed-loop system:

Jg(y) < R;.

In addition to the purposes of cost upper bound, we are also interested in achieving
boundedness in probability for the closed-loop system. This notion, together with the
asymptotical stability in the large, was introduced in the classical book [21] and has
now been widely used. For the sake of the self-containedness of this paper, we will
restate these two notions in Appendix A.

The system (3.1) can be rewritten into the following compact form:

(3.3) dz = f(z) dt + Bg(x)udt + h(z) dw,
where
xo + fi(x1)
f(l‘) = mn+f’r;71(x1> ) g(x)zg(xl),
L fn(xl)
[ O(n—gi—l)xl Zl(xl)
B= " , h(z)= 2(:331)
L b'o hn(xl)

If p =1, then m = n — p = n — 1. For this special case, vector B defined above is
snnply [bn—la e ,bl, bo]T.

For tracking purposes, the controller to be designed is time-varying in general, and
so is the resulting closed-loop system, even though the original system is not. Thus,
as in [26] and [33], with the long-term average risk-sensitive cost criterion Jy(y), for
a given desired cost value R; > 0, a practical risk-sensitive output-feedback tracking
control is designed as

é:a(t7£’y)7 aecl7
(3.4 {u=u(t, &y), pecll,

so that there exists a nonnegative value function V (¢, ,€), which is C! in ¢ and C?
in (z, £) and radially unbounded with respect to z and &, satisfying the following
Hamilton—Jacobi-Bellman (HJB) inequality:

oV [V OVTf+Bgu) 00V, (V'
(3:5) m*{m agH P i L
1 0?V ¢



890 YUN-GANG LIU AND JI-FENG ZHANG

From (3.5), it is easy to see that the essential difference between the stochastic

HJB and deterministic HJB equations is that the former has the It6 term %Tr( %21‘2/ hhT).

How to deal with this term is the key to the control design and performance analysis.

4. Output-feedback risk-sensitive control design. We shall design the
output-feedback tracking controller in three steps. First, we introduce an observer
to rebuild the system states. With the observer dynamics in the loop, we introduce
a sequence of coordinate diffeomorphisms transforming the system into a lower tri-
angular structure which is amenable to the application of integrator backstepping
methodology. Then, we describe the control design procedure and present several
lemmas, which will be used for the performance analysis of the closed-loop systems
in the next section.

4.1. Observer design. Since the states of (3.1), except for the state x; which

can be obtained directly since y = z1, are unknown and need an observer to rebuild,

T =3+ kily —71) + f(y),

Tpo1 =Ty + ko1 (y — T1) + fou1(y),
(4.1) Tp = Tpi1 + ko(y — F1) + fo(y) + bng(v)u,

i'\n—l = /x\n + kn—l(y - 5j\l) + fn—l(y) + blg(y)u7
‘%n = kn(y - fl) + fn(y) + bog(y)%
where ki,ks, ..., k, are design constants such that all the roots of polynomial s™ +
k1s"! + ... + k, have negative real parts. The initial condition for observer (4.1) is
set by certain value Z(tg) = Zo.
Let T = [1,%2,...,2,] . Both system output y and observer state vector 7 are

available for control design. Denote the state estimation error as £ = x — 7. Then we
have

_kl
. In—l

(4.2) dz = Fdt + h(y) dw £ AFdt + h(y) dw.

—}ﬂn 0 --- 0
Thus, with observer dynamics (4.1) in the loop, we have the following entire system:
dz = Az dt + h(y) dw,

dy = (T2 + Z2) dt + f1(y) dt + hyi(y) dw,

By = T3+ ka(y — 31) + fo(v),

(4.3) Tpo1 =Ty + kpo1(y — T1) + fro1(y),
fL‘\p = L/I?\p+1 + k‘p(y - EU\I) + fp(y) + bmg<y)u7

i'\nfl - an + knfl(y - ?E\l) + fnfl(y) + blg(y)uv
Ty = kn(y — Z1) + fu(y) + bog(y)u.



RISK-SENSITIVE CONTROL OF STOCHASTIC SYSTEMS 891

System (4.3) has three parts, which are associated with the estimation error z, system
output y, and observer states Zs, ..., Z,, respectively. In particular, when p = 1, then
m =n — p=n— 1. For this case, the second subequation of (4.3) shall be replaced
by the following equation:

dy = (ZTa + T2) dt + f1(y) dt + br—19(y)udt + hq(y) dw.

In the next subsections, with this entire system as starting point, we shall search
for the desired controller.

4.2. Coordinate diffeomorphisms. To prepare for the backstepping design in
the next subsection, we introduce a series of p coordinate diffeomorphisms (see [36])
so as to convert the entire system (4.3) into zero-dynamics canonical form, which is
amenable to the application of integrator backstepping methodology.

The idea of such coordinate diffeomorphisms was first introduced in [30] and
significantly modified in Chapter 8 of [24]. Our presentation, including the two cases
of p=1 and p > 1, is much more direct and easier to implement.

4.2.1. Case of p = 1. When p =1, m = n—p = n—1. This means that control
input appears in every subequation of (3.1) and (4.1). In this case, one coordinate
transformation is sufficient to obtain the desired structure.

Let ¢o = [y, T2,...,2s] . Then, by (4.3), we have the following dynamics for gy:

(44) dsg = Dogo dt + Go(y, 51) dt + [1, le(nfl)}ng dt + g(y)Bou dt + Ho(y) dw,

where

Do = : In—1 ,

6 0 --- 0
Go = [f1(v), f2(y) + KkaT1, -, fu(y) + kna] T,
BO = [bn—17 R blybO]Ta
Ho=[(l®)", Osx(n-1)] "

By coordinate transformation we would like to transform the vector By into one
with all elements being zero except the first element, b, 1. Let ¢ = Ti¢g, where
T, is the same as I, except with the first column replaced by [1,—bp_2/bp_1,. ..,
—bo/ bn,l]T. Then, T} ! is also the same as I,,, except with the first column replaced

by [1 bnz _bo }T.

P bp_1’ P bn—1
Then we have

d¢y = Dy dt + Gy (y, .%1) dt + [1, LQT]T§2 dt + g(y)Blu dt + Hy (y) dw,
where Dy = T1 DTy 1 is the same as Dy, except with the first and second columns
replaced by [d11, ..., d1,,]" and [1,—bn_o/bp_1,...,—bo/bn_1]T, respectively:
A - _ T
G =T1Go(y,71) = [911(¥) + di1Z1, ..., G1n () + dinZ1]
Ly = [=bn—2/bn1,- -, =b1/bn1, =bo/bp_1]",

By =T By = [bp—1, lem]T7

Hy = TiHo(y) 2 [((®) 7., () 7]
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Denote = ¢; = [1,...,m,] " and ¢ = [92,M3,...,m,] . Then, the dynamics of
z, ¢, and n; can be expressed as follows:

A7 = AF dt + h(y) dw,

ban

= di2

: I_ d
d¢ = b ¢dt + ydt

bn71 *

—bf%l 0o --- 0 dpn
G12(y) + d1aT1 bn—2 E2 (y)
G13(y) + di3T, 1 : hs(y

(4.5) | T dt — D Fadt + 3_( 1w
: brn—1 by :

gln(y) + dl’ﬂ‘%l bo ﬁn(y)

2 BCAt + L3 At + Lo dt + G(y) dt + U(y) dw,

dm = [1, 01x(n—2)] ¢dt + (11 (y) + d11y) dt
+311§1 dt + %2 dt + bn,lg(y)u dt + ﬁl(y) dU},

where

Yy="m,
Ly = [d2, di3, ..., d1n] ",

G = [912(¥) + di2y, G13(y) + disy, - - Grn(y) + diny] "

This system is equivalent to the entire system (4.3) under the transformation
[m, ¢T)T = Tily,%2,...,%,)". The structure of (4.5) makes the design of an out-
put feedback controller much easier (see the latter design procedure for details).

4.2.2. Case of p > 1. Let us now give the coordinate transformations for the
case of p > 1. From the p transformations below one can see that there exist some
essential differences between this case and the case of p = 1.

Let Go1(y) = f1(y), doi = ki, and G, (y) = fi(y) (i =2,...,n). Then we have the
following dynamics for ¢o = [y, Ta,...,Zn] " :

dso = Doso dt + Go(y, 1) dt + [1, 01 (1)) " Z2 dt + g(y) Boudt + Ho(y) dw,

where matrix Do and function Hy are the same as those of (4.4), and

F1), f2(y) + ko, ., fuly) + kna] T
01 (W) + do1Z1, oo (y) + do2T1, - - - Gon (y) +30n51]T

F % =T
[901 (1, 1), Go2(y,T1), - - - gon (0, 1)),
BO = [le(p—l)abmabm—l, .. .,bO]T.

By the first transformation, we would like to transform the matrix By into one

with all elements being zero except the pth element, b,,. Let ¢; = Ti¢p, where T3 is the
same as I, except with the pth column replaced by [le(p_1)7 1,— bZ”"l e —é’—o] T
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Then T ! is also the same as I,,, except with the pth column replaced by [le( p—1)s L,
by — bo 1T
“bmer o feT
Then we have
d§1 = Dlgl dt + Gl(ya %l) dt + [17 OIX(TL—l)} ! %2 dt + g(y)31Udt + Hl(y) dwa

where Dy = Ty DoTy ! is the same as Dy except with the pth and (p + 1)st columns
replaced by [01x (p—2), 1, d11, ..., dim+1] " and [01(p—1), 1, =bm—1/bm, ..., —bo/bm] ",
respectively,

G1 =T1Go(y, 71)
A - . _ =
= [T +duy, ., Gin(y) + dinda)
A ~ ~ \1T
= [911(y7331)7~-~,91n(y7331)] 3
Bl == TlBO = [le(pfl)a b7na 01><m]T7
Hy =T1Ho(y) = Ho(y)-
By the ith (i = 2,...,p — 1) transformation, we would like to transform the
(p — i+ 2)nd column of the matrix D;_; into the (p — ¢ + 1)st unit vector. Let
¢; = Ti;—1, where T; is the same as I,, except with the (p — i + 1)st column replaced
by [le(p,i), 1,—di—11,..., —di,l)mﬂ»,l]—r. Then, Tfl is also the same as I,, except

with the (p — i + 1)st column replaced by [0 (p—s), 1, di—1,1, ... i1 myio1] "
This leads to

ds; = Dys; dt + Gi(y, 1) dt + [1, 015 (1)) | T2 dt + g(y) Biudt + H;(y) dw,

where D; = TiDi,lTifl is the same as Dy except with the (p — 4+ 1)st and (p + 1)st
columns replaced by [0y (p—i—1), 1, di1, ... ydiivm) | and 01 (p—1), 1, =brm—1/bm, ...,
—bo/bm] ", respectively,

Gi =T,Gi—1(y, 1)

A - _ -
=[G (y) + du1, ..., i (y) + din@] "

A ~ ~ T

= [9i1(y,T1), -5 Gin(y, T1)]

B; =T;Bi_ 1 = B1 = [01x(p—1); bm, O1xm) s

H; =T;H; 1(y) = Ho(y)-

Finally, by the last transformation, we would like to transform the second column

of the matrix D,_; into the first unit vector. Let ¢, = T},5,—1, where T}, is the same as
I,, except with the first column replaced by [1, —d,—1.1,...,—dy—1,—1] . Then, Tp_1 is
also the same as I,, except with the first column replaced by [1,d,—11, ..., dp,lﬁn,l]—r

This leads to

dsp, = Dps,dt + Gp(yy r1)dt + [1, ~dp_1,1,.--, _Clp—l,n—l]—r Tp dt
+9(y)Boudt + Hy(y) dw,
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where D, = T,D, 1T, is the same as Dy except with the first and (p+ 1)st column
replaced by [dp1,...,dy,) " and 01x(p—1), 1, =bm—1/bm, ..., —bo/bm] ", respectively,

G, = Tpprl(yafl)

VANNEN -~ _ — 1T
= [gpl(y) + dplxlv cee 7gpn(y) + dpnxl:l

A ~ ~ \1T
= [gpl(yaxl)a"'7gpn(y7x1)] )

B,=T,B, 1 = By,
A - T
H,=T,H, 1 =T,Ho = [(hi(y))",....(ha(x)) "] .

Denote 7 =5, = [1,...,mn]" and ¢ = [p41,---,7a] . Then n; = y, and the
dynamics of estimation error, the zero-dynamics of ¢, and the lower triangular form
for the dynamics of 71,...,7, can be expressed as follows:

Az = AZ dt + h(y) dw,

b”m—l
S -
: L1 pp+1
=1 3 Cdt + : y dt
b’nL
dp" .
—p 0O --- 0
_dpfl,p gp,p+1(ya %l) 1 thrl(y)
(4.6) + : Ty dt + : dt + : dw
_dpfl,nfl gpn(y7 51) i En(y)

2 BCdt + L7, dt + Lo dt + G(y) dt + ¥(y) dw,

dm = dpry dt + (12 + To) dt + g (y, 71) dt + b (y) dw,
dne = [dp2y + 13 + gp2(y, T1) — dp—1,1T2] dt + ho(y) dw,

dnp—1 = [dpp—1y +1p + Gpp—1(Y, T1) — dp_1,p—272] dt + /};p—l(y) dw,
dnp = [L le(m—l)} ¢dt + dppy dt + gpp(y7 ?El) di
+bng(y)udt —d,—1 p—1T2dt + iAzp(y) dw,

where

Yy=m,

Ll = [dp,p+17 ce ,Epn]T7
G= @p,p+1(i‘/) +dppt1Ys - Gon(y) + dpni‘/]—r~
This system is equivalent to the entire system (4.3) under the transformation [, ...,

Nps¢')T =T, - Tily, To,...,2n]". The structure of (4.6) allows the design of an
output feedback controller by using integrator backstepping methodology.

4.3. Control design procedure. We now start to design the desired controller
with the estimation error Z and the zero-dynamics ¢ (given by (4.5) for the case of
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p =1 and (4.6) for the case of p > 1). To do so, let x = [¢T, Z"]" € R*™*™. Then
for both p =1 and p > 1 we have

ana=[of ] [§0 Ja [ | aw
2 Wydt + F(y)dt + ®(y) dw,

where L = [L1, Lz, Opyx(n—2)], and F and ® are C*.

For the objective of a tight controller, the dynamics x would be partitioned as
X=1[Xa, xg 1", where x, = [¢T, Z1]T € R™*! is available for feedback design, while
Xo = [To,...,Tn]" € R is not. Furthermore, y, and Y; satisfy the following
stochastic differential equations, respectively:

E L L 0 _
(4.8a) dx, = ' Xo dt + ? ) xp dt
01><m —R1 01><(n72)
Gy Y (y
+ ) dt + @) dw
hi(y)
£ WaXa dt + Laxs di + Fu(y) dt + @, (y) dw,
0 0 0 —ko
(4.8b) dxp, = = xpdt+ | ¢ . : Xa dt
0 0 0 0 0 kn
ha(y)
+ : dw
hn(y)

é Wixp dt + Lpxe dt + @b(y) dw,

where F,, ®,, and ®; are C*.

Remark 4.1. From subsection 4.2 we know that E, G, L, and ¥ in (4.7)—(4.8)
are differently defined with respect to p = 1 and p > 1, respectively, and so are W,
Wa, Wy, F, F,, Fy, Ly, Ly, and ®,. Thus, for the sake of the unambiguousness, these
two cases will be separately handled below.

We are now in a position to develop a recursive construction procedure for the
desired risk-sensitive controller.

4.3.1. Initial assignment. First, we present the initial assignment for the entire
design procedure.

By assumption A2, we know that matrix £ is Hurwitz. This, together with the
Hurwitz property of matrix A, implies that W is also Hurwitz. Therefore, there exists
a symmetric and positive definite matrix P such that

(4.9) WIP+PW =T
We introduce a value function (or Lyapunov function) for the y system:

(4.10) Vo(x) = ¢(£(x)) = 8(c+ (X)) — 67, &€=x"Px,
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where 0 < 6 < 1, ¢ > 0, % < v < 1. Design constants ¢ and § will be specified
later. Constant + is pregiven and called the characteristic parameter of value function
Vo. Clearly, Vo(x) is positive definite and radially unbounded, and it vanishes at the
origin x = 0(n+m)><1~
Remark 4.2. Risk-sensitive control is much different from stochastic stabilization,
and thus the methods developed by [5], [6], and [35] are not suitable for our control
objective. Therefore, here we introduce a subquadratic function Vj characterized by
v (see (4.10)), by which a method suitable for output-feedback risk-sensitive control
de51gn is developed.
Let z; = y — yq be the tracking error. Then, by assumptions Al and A3, there
exist a vector-valued smooth function F(y4, 21) and a matrix-valued smooth function
®(yq, z1) such that

(4.11a) F(y) = F(21 +ya) = F(ya) + 21F (ya, 21),
(4.11b) D(y) = ®(21 + ya) = ®(ya) + 21P(ya, 21)-

LEMMA 4.1. There exist a smooth vector-valued function oo(x, y), a smooth
Junction No(yd, Xa, 21), and smooth ro(ya), Co(ya) such that

ro [Ix|I”

———=————dt + Nyz; dt + C, dt.
(ctx P + Nozp dt + Co

0
(4.12) dVy < ogdw — 10003— dt —

Proof. By (4.7) and the It6 formula we have

(4.13) dvp = ——||X||2 dt + oo(y, x) dw — 20008— dt + Zooag— dt
8 02V
250 PR s T (R @) ) a

where gg = %CD is a row vector-valued function. In the above equality, we have used

the technique of subtracting from and adding term 40000 dt to its right-hand side.

Notice that %‘;0 = g—? g—i and 3¢ = (céﬁ' Then we have
0 0 26
(4.14) o= 20 % _ T \TPO(y).

% o (et

Let & = XJ (P = PaPy P )Xo, where P=[[5 2], P e RUmDx(msD),

2
P, € RmAOx(n=1) " p, e R(n=1)x(n=1) = Clearly, since P is positive definite, so is
P — PQPQIPQ—r . Then &, is available for feedback design and satisfies 0 < ¢, < €. For
the first term of the second line on the right-hand side of (4.13), by using (4.11a), we
have

0+ ,00 - -
_ 267XTPF(yd) 267XTPF(yd, zl)Z
crom T g
< 0l | SIPFwall® | 89l PF(ya, Zl)||222 dvedalixll®
T (e gile+ O ealc+1 LT (e
< 0v(eds + €)X n NNPF(ya)ll* | 5YIPF(ya, 20| »
(c+xTPx)1= g et edy(c+ &) T8
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Here and hereafter, €91, €92, €03, and €g4 are positive design constants to be deter-
mined later.
For the term 2og0( dt on the right-hand side of (4.13), by (4.11b) we have

0 1 _ 08°°x Pe(y)((y)) " Px
4700 (c+xTPx)> 2
— — T
082X TP (D(ya) + 218 (ya, 21)) - (P(ya) + 219(ya, 21)) Px
B (c+xTPx)*2
_ 06°°x " PO(ya)(®(ya)) " Px
(X PxE D
06%9% [Xa > x5 | P (2®(ya) + 21®(ya, 21)) (®(ya, 21)) " Plxad, x4 1"
(c+xTPx)*2
_ 062X PO(ya)(®(ya)) " Px
(c+xTPx)*=*

21

(4.16)  +

— — T
N 06%7% X4, O1x(n-1)] P®(ya, 21)(®(ya, 21)) " P [x4 , O1x(n-1)] 2

(c+xTPx)*> !

— T
N 06y x " P (28 (ya) + 21®(ya, 21)) (® (yd, 21)) TP [01x (m+1)s Xy |

21

(c+xTPx)*2
N 206272 x " P (yq)(®(ya, 21)) TP [Xq » O1x(n—1)
(c+xTPx)* >
0627% [Xa , O1x(n—1)] P®(Ya, 21)(®(ya, 21)) " P[01x(m+1) XI,T]TZQ
(c+xTPx)*% !

]T

21

06°7*|| P®(ya) | X1
R (S N
— T
952 2 [Xa s O1x(n—1)] PO(ya, 21)(®(ya; 21)) " P [Xa » O1x(n-1)) .2
(et €7 1

(Ya) + 212 (ya, 21)) (@(ya, 20) " |7 ,
pegs(c+ & )P+ o

062~2|| P|? || (29(
L 021

L1 5272HP||2€§5 IxI1?
)\p 1(P) (C+XTPX)177
08%*|| P|*

2
2 2 | A3 2\ 1% 2 2
e el (e 13 (ya, By,
s Dl (190 + 180 =01 ) [, 221

3062723, |Ix ||
2(c+xTPy)’

where p is a positive even integer (that is, it takes values in set {2,4,6,8,...}) and

satisfies the inequality p > ﬁ ( +1) Let ¢ = p’%l. Then, p and ¢ satisfy

% + % = 1. In the inequality (4.16), we have used the Young’s inequality

P/ P
T<€W(x?y)x

1
2 el + —————lyll? Va,y €R", &> 0, W(z, y) >0,
zy< ) [l e, y)llyll T,y £ (z, y)
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to get

06y x " P (2®(ya) + 21®(ya, 21)) (®(ya, 1)) " P01y (m+1)> X5 )
2
(c+xTPx)*2

_ 08PIPIPWP (00 [| (22 (ya) + 219 (ya, 21)) (P(ya, 21)) [
- pggg(c + 5)217(1_7)
06>y || P|*edsllx|1*

gW(x)

< ‘952’72||PH2 H(2<I’(l/d) + 216(yda Zl)) (E(yd, Zl))TH;Zp
- pggg(ch ga)p*'y(zﬂrl)

L= 1)08%y°|| P||*eds x1?
pATT(P) (c+xTPx) =7

min

with W(x) = (c+ €)%, and

_ T
206°7*x " P®(ya)(®(ya, 21)) " PXa s O1x(n-1)] 2
(e XTPT 1

- 2
66%* (WHP%@@(% )T P, O] T[P22 + 634(W(x))2llxll2>
<
8 (X PP

i L L N O Ve AN &
P P 2 04
= 534(0“1‘551)3_37 ||Xa|| || (yd)HFH (yd7 Zl)”pzl + (C+XTPX)1_’Y,

0627%[X 4 01x (n—1)|PP(Ya, 21)(®(ya: 21)) " P[O1x(m+1)s Xa ] o
(c+xTPx)*=2

— — 2
o (et 1 O PP 1) Blaa 20) P51 + a2 00l ?
: et X PO

0292 PI* s VO i1 P

a q) ) Y
< 5@y or e el @t et + 5T i
with W(x) = (c+&)2737.

For the last term on the right-hand side of (4.13), by (4.11b), we have

1 Vo . T
(4.17) 5 Tr < % dD )
. 6y P 290 =)PXX TP o
(c+xTPx)t= (c+xTPx)*7

< 201 (@) T PO(w) + 2 (@la 20)) PO(ya, 21))

(64‘511)17’y -
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Substituting (4.15), (4.16), and (4.17) into (4.13), we get (4.12) with

3 PO(ya)l3  (p— 1)y | P2
(4.18) 1= by(1 = ey — cBy) — 0022 | Seg, + 1L2WlE = Ve 7]
‘ PN (P)

min

_ PP, 2|
€ga(c+ &)1

]T

n 952’72 [XI» le(n—l)] Pa(yd7 21)(6(3/(17 21))TP I:X;ru 01><(n—1)
(c+&)7 7

N 0622 P|* || (2@ (ya) + 212 (ya, 1)) (®(ya, Zl))T’ﬂZVl
peps(c + & )pr P+ '

21

06%+*|| P||*
ed4(c+ )33

26y Tr ((E(yd, 21)) T P®(yq, 21))
(4 &)

€01

22 —
+ Il (1901 + 5 10 2) 1 ) B 20l

21,

(4.19) Cy =

The control design procedure will be presented for the two cases of p = 1 and
p > 1 separately in subsections 4.3.2 and 4.3.3 below.

4.3.2. Control design for the case of p = 1. Let us now present the control
design for the system (3.1) with p = 1. From (4.5) and (4.7) we obtain the following
overall systems:

(4.20a) dxy = Wxdt + F(y) dt + ®(y) dw,
(4.20b) Ay = b_19(y)udt + dyxo dt + g1 (y, Xa) At + By () dw,
where

Y=,

dl = [1, le(n—Z)]v

91 =911 (y) + d11[01x(n—1)> Xa +d11y + [1, O1x(n—1)] Xa-
It is easy to check that g; and El are C*™°.
Let o1 = by_1g(y)u, S1 = dy, F(yy, X1, m) = 91(y, Xa)— ¥, and W1 (y) = 1 (y).
Then, by (4.20), we have the dynamics of tracking error z; = m — ya:

(421) le = (041 +Slxb+F1)dt+\I/1 dw.

Let Vi = Vo + Z1(ya)2?, where V; is defined by (4.10) and Z; is to be specified later.
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Then, by (4.12) and (4.21), we have

(4.22)
0=
dVi =dVy + 22151(0&1 + )+ Sle) dt + aitlzf dt + El\I/l\I/I dt +2=21¥2z; dw
<O'1(yd X zl)dw—galof dt—ﬁlElzfdt-‘rﬁlElZ%dt—To(yd) ||XH2 dt
= s X 4 (C+§)177

0=
+22121 (ya)(on + Fu)dt + —— 5 ! 23 dt + No(Yd, Xa, 21)z1 dt

0 0
+ 40—101 dt — 0000 dt + Myxpz1 dt + 2,9, 9] dt 4 Co(yg) dt,
where M7 = 25,51, 01 = 09 + 221V12;. In the above inequality, we have used the
technique of subtracting from and adding to its right-hand side the terms 40101 dt

and (312127 dt. Here and hereafter, (1, 31, ... , B, are positive design constants to be
determined.

Since o¢ = %—‘Q(I)( ) is unavailable for feedback design, so is the term o107 dt —
gaoag— dt on the right-hand side of (4.22). Therefore, we give the following estimate:

(4.23)
0
Z(UIUI 0000 ) = 0Z100V] 21 + 0230, 0] 27

= 0220, 0] 2% 4 0},

1%
Ix
0

+ FE%\IJ@TNM — e,
11

2

.
o — <I>\Iﬁzl
ox 2 €11

2
v\ =
=) - 0]
Ix 2e1)

2
”X|) +95§(\111\1/1T 42\1/1<1>T<1>\1F)
11

406%%1, | P|I?

< —be
= 11 cl—

+

e+ x TP

where (and whereafter) €17 and e; are positive design constants to be specified.

Define
o\ "
= — S
ox 2 €%,

ol + B oy,
P161171

2
(424&) A11<yd7Xazl> = 96%1

)

P1
e (p1— 1)
b1

(4.24b)  A12(ya, X, 21) =

Clearly, A;; > 0. Thus also, by Young’s inequality, it is easy to see that Aqs > 0.

If py takes values in set {4, 6, 8, 10, ...} and satisfies p; > 5=, then we can give
an upper bound for “Mjxpz1”:
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P1

p1—1 _
SRS
P1

M[T||P:
(4.25)  Mixpz = —A1p + T4 [LCAN 1p||1 P
p1€y

r1

e 1) o IxII?
<-A A T(P) (M —_—
= 12+ 1 max( ) ’Y(C) + (C ¥+ XTPX)l—'y

P1
T (py — 1 M|
n el (m )IC( b1 ) 2W> + I 1][”1 P
p1 pP1— 1 1€71

where K(a1, az) is defined in Lemma B.3. B
Since there exist smooth functions ¥ (y4, 21) and Uyy(yq4, 21) satisfying

Uy =V (ya, 21) = V1 (ya) + 21911 (ya, 21),
for the fourth term of the last line on the right-hand side of (4.22) we have
(4.26) 1010 = E1[[(T1(ya) + 2101 (ya, 21) "2
< 25| (Wa(ya)) 1P + 251 [[(P1a(ya, 21)) "I,

Choose
- K1
(4.27) 2= _ :
1+ [[(W1(ya)) TII?
where (and whereafter) k1, Ko, ..., k, are positive design constants to be determined.

Thus, by substituting (4.23), (4.25), (4.26), and (4.27) into (4.22), and via some
straightforward calculations, we get

1 (ya)lIx|1?

———dt
(c+xTPx)~

0
(4.28) dV; < =23 dt + oy dw — 1‘710; dt —

—E1Bi27dt + 225 (g — @ (y,[jl]v Xas M1)) dt
= A1 (Ya, X, z1) dt + 2512120 dE + Cl(yf[il]) dt,

where
_p1_
4082y PP e (1 — 1)A1—”(P),

cl= max

(4.29) r1 = 710(Ya) o

fra 2 01 MNP
2 22, dyg 2915t

(4.30) Ny =F) +

U, U,0Teu]
+051< 171 ! 1

21+ (P11 (ya, 21)) T[22,
2 82, )

)
Z1="1—Yd

— 21 No
4.31 =<—N; — - —
(4.31) o { ! 25, 251}

Al = All + Alg, with All and A12 being defined by (424),

P1

(4.32) Oy = Colya) + st -l

Pl

L a (pl_l)lC< D1 27>.

n1 p1—1’

PP M )+ 25 (T )T
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It is easy to check that Cy, r1, and @; are C*.
Thus, we can choose the function al(ygl], Xa, 1) in the following form:

(4.33) a1 =@ (g, xa. m).

From this and the definition of ay, i.e., a1 = b,_19(y)u, we immediately obtain the
following risk-sensitive controller:
! Lo
(4.34) u= = @1(Yg s Xa> M)-
bu19(y)  burgly)

Then, by (4.28) and (4.33), we have

r1(ya) x|
(c+xTPx)—

— Z1B121 dt — A1 (ya, X, 21) dt + 01(951]) dt.

(4.35) dVy < —22dt + oy dw — 2010; dt —

4.3.3. Control design for the case of p > 1. This subsection investigates
the control design for the system (3.1) with p > 1. From the procedure addressed
below, we know that the control design for this case is more complicated than that
for the case of p =1 given in subsection 4.3.2.

First, from (4.6) and (4.7) we obtain the following overall systems amenable for
integrator backstepping design:

dxy = Wxdt + F(y) dt + (y) dw,
dm =n2dt + dixp dt + g1 (y, Xo) dt Jrill(y) dw,
(4.36) dng = n3 dt + daxp dt + g2(y, Xa) dt + ha(y) dw,

dnp—1 = 0, dt + dp_1 x5 At + gp1(y, Xa) At + hp1(y) dw,
dn, = bpg(y)udt + dyxs dt + g,(y, Xa) dt + h,(y) dw,

where

Yy=m,

di = [1,01x(n-2)], di=[~dp-1i-1,01x(m—2)), 1=2,...,p,
9i = 9pi (Ys [01xm, 1Xa) +dpiy, i=1,...,p—1,

9p = YGpp (ya [lema I]Xa) + dppy + [17 01><m] Xa-

o~

It is easy to check that g;, h;, i =1,..., p, are C*.

Below is the backstepping design procedure, which involves p steps in all.

Step 1. Define variable zo = 1o — al(y([il],xa,m) and value function V; = V +
Z1(yq)2? for this step, where a; is a smooth function known as a virtual control law
and =i is a positive and smooth function. Both a; and Z; will be specified in this
step.

From (4.36) it follows that

(4.37) dz1 = (20 + a1 + FL(y)) xaom)) At + S1xp dt + Uy () du,

where Py = g1(y, Xa) = fa S1 = di, W1 = hu(y).
Clearly, (4.37) has the same structure as that of (4.21). Then, as in the case of
p = 1, the virtual controller a; can be given by (4.33), which is such that
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r1(ya) x|
(c+xTPx)—

— Elﬁlzl dt — Ay (yd, X 21) dt + 2512129 dt + Cl(yd )dt

0
(4.38)  dV; < —zidt + o1(ya, X, 21) dw — ZUIUI dt —

where o1, r1, 21, Ay, Cy are defined as in the case of p = 1.
This completes Step 1.
Step i (i =2,...,p—1). Suppose that from step 1 through to step i — 1 we have

obtained z; =1n; — aj,l(ydj_l], XasMjj—1])» J = 1,...,4, and value function
i—1
Vici=W+ Zaj(y([jj_l]a Xas Z[j—1])232-
j=1
satisfying

i 0
(4.39) dVi_y < —22dt + Ui_l(y([; 2], X 2Ji—1]) dw — 10i- o, dt

2
X i—
— T l(yd) (C T )|<|T|F,X)1_,Y dt — A 1(y([j ]7 X5 Z[i—l]) de
—Z_.j<ﬁj—2 Z )z?dt
m=j+1

+258; 12, 1z dt + C’i_l(yd n Xa» 2[i—1]) dt,
where
dzy = (20 + a1 + Fl(y([il], Xas 71))dt + S1xpdt + ¥4 (nl)d ,
dz; = (2541 +a; + F(yl, xa, )t + S50, xas mg 1) xedt

+‘I’ ( - ]a Xa> n[jfl])dw j :2 3 _15
i—1

1
O;— 1—0’0+ (2\_,]21\1/ +Z Z >,

j=1 =1
(440) Ti—1 =T (yd)

(441) Ci_1=Ci(y [1] +Z2‘—‘J“ Z/Lj ) Xas 0G—1)x1)) " I,

and A;_y = Ai—l,l(y([ji_g]v X 2li-1)) + Ai—1,2(y,[;_2]7 Xbs Z[i—1)). Here A; ;1 and
A;_1 o are given as follows:

_ z; 0= Zj o=
L (yg ]7Xaa Z[]]) \I/ +ﬁaqu) ﬁ TZ]Z\I/]“ ]:17 71_17
@ T k=1
T 1 2
oV 1 «
Ai—l,l = 952 () — = @FTZ y
B ox 2e2, ot 7T
k-1 o=
Mol ™, Xas 209) = 250k + 21 Y = =3 —i—zka;kL 1<k<i-l,
Jj=1 @
P1 i—1 D1
et (p1—1) HZ’“ L M 2,

(4.42) Ai_12= Xl 7= +

7—1
p1 =
- - Mz
: S, ) .
P1 P1€7 <k_1
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It should be noted that =;, Fj, S;, I'y, ¥;, M;, 7 = 1, i—1, 05 0, 1 =
0,1,...,¢—1, 04_1, ri—1, Cj—1 are C*. By Young’s inequality, it is easy to see that

Aj_q1,2>0.
L S0 M 2 + M 24 |[Pr. Then

i
i—2 P1
Sl )
k=1

Let 0;—1(y, _2],Xa,z[i—2]7 Zi1) = e
[i_Q]aXav Z[i—2]70)'

], Xa>s Z[i—2]7zz'—1) - Qi—l(yd

p1

ZMk szrM 1%i—1

i— JAN
Ti—l(y,[j 2]»sz[i 1 = (

= 0i—-1 (y([i

Thus, by using the identity (see [25])

Laf(s
FX) = £0) = (/ Ol ) x.

0 $ s=BX
we have
(4.43) Tio1 =21 Yo (™ Xas 25 1))s
where

1 . .
Ti 1 =/ 9011l ) da.
0 s s=azi_1

Let z;41 = 41 — az(y([;], Xa,n[i]), where «; is a C* function to be defined later

Then we have

= (zit1 + ai + F-(yg]7 Xa> Npi))) dt

(4.44) dz; =
+ 58, X, Ni—17)Xp At + Vi (y =1 s Ni—17) dw
where
= Doy da
1—1
Fi=gi(y, xa) — Y o, (1, Xa)) = 5 — (WaXa + Fa(y))
= Xa
3, o, 1"
i aOZZ 1 (]+1 _ ETI‘ 8204i_1 hl hl
= 2 A[xa . my_yyl")? A: - ’
hi—1 hi—1

Z Oa;— 1 3012'—1[%

=1 577; ] O0Xa

Oai_ 15 Oa;—1
_ o,
Z o " ()

;= hy(
j=1

all are smooth functions.
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Now we introduce the value function for this step as follows:
(445) Vi=Via+ Ei(y,[ji_l]7 Xa>s Z[i—l])zi27

where =Z; is a positive smooth weighting function to be determined below in this step.
By (4.39) and (4.44), we have

i—1

AV; = dVi_1 + 22,5 (2i41 + o + F; + Sixp) dt + 22 Z i y9 Y a
Jj= O d
o=, =1 o=,
(4.46) + 22 <a>j (WaXa + Fa+ Laxs) + Y _ 8—2(%1 +o;+ Fj+ Sij)) dt

a j=1

3, o, 1"
1 02(2;22 vy L4
2 8([Xa7 Z[i]} ) : :
v, U,

0=, 8H1
+25;2;¥; dw+z (8 a@ —|—Z )dw

i 0 0
< —z% dt + ai(yt[i 1]’ X, Z[i]) dw — 70'1-0‘2— dt + z(aia;r — aifla;r,l) dt

4

ri—1(ya) [IxII?
(c+xTPx)t—

— Z =5 (ﬂj 2 Z Iim> ZJ2 dt — Ai—l dt

m=j+1

+ 22,8 (zi41 + 05 + Fi(y([;]aXaa 2p7)) dt + ZiMi(y,[ji_l]y)(aa 2))xp dt

o, o, 1"
1 0%(Z;22) vy ¥y
+Ciqdt+ =Tr | ———F5— . . dt,
2 o, 2 | ||
W v,
where
a i—1
0 = 04— 1+2'—41Z1 18 228
F =F + Zi lz_: 8Ei (j+1)
B 2=, — o (4) Yd
=0 9Yq

a

i—1
=; 0=;
+Za Z7+1+aJ+F)+aX (WaXa+F>>

i—1
M; = 25,5, +zZZa S +ZZ§;2La
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all are smooth functions. Here, we have used the technique of subtracting and adding
terms %am; dt and (3;Z;22 dt to the right-hand side of inequality (4.46).

Let Ei—l(y([j ]7Xaz[7, 1])_ Oi— 1_TX¢) Z’L 1(2’— ZJ\I’ +Z]2 Z;J D+ ZJQ Zi;ll gii

U}). Then by noticing that &;_ is independent of x3, we have

(4.47)
9 T T
—Ai_11+ Z(Uz'a'i —0i-10,_1)
) 2
oVy T 1 — —_ T = T = T
Jj=1
oV ’
— o (28) -k Zw‘bﬂ%
811
oV,
+ 02,200 2 + 02(Gi—1 + EiTiz)T 2
ox
2
aV T 1 i—1
2 0 =
= 9611 <a ) - 25%1ZHJ¢)F3 Zj
1
oV 1 & T T 0 or A TarT 2
+lol S0 - > =500 2 |S00] 2 — — 221,07 8T
( (8)( 25?1; R e
0 1—1
o EineTerT 2 4 oo ST el
4511 2611 j=1
+ 951‘(51‘71 + Eirizi)r;‘l—zi
1
=—Ay +05; (25iriq)—rq)zi
4e4
ZE- @Dz + T + Eirizi>rjzi’
where
o=, . i—1 =,
T [i—1] ) = P, i 1(1) i kd
(yd » Xas Z[Z]) it 25; OXa o 2E; ) 0z; g
o\ 1 ¢ ’
i—1 0 =
T || |G- I 3 i
J=1

Similar to (4.25), by using (4.42) we have
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(4-49) M;xpzi — Ai—1,2

. Pl
i P1-1 i—1 MT p1
3 pr—1 Py dim
= E Myzi | xp — +——— oz )HXbH”l’1 | it d 2t
1 D1 p1&y

_P1

p1—1 _ P1 i
_ _(611 (pl 1) ||Xb||% + HZ] 1 ZJH _ZM]Z]XI))
7j=1

b1 ps

1 i—1 p1 i—1 p1
+ 761)1 ( j Zj + M7Tzz ZM]TZ]‘ )
pP1&7 = =
=—-Ap+71;,
where
( ) :D1 p1
i— P1— 1
(450)  Aizlyy ™ X0 2p) = ilnxbnm o ZMT,ZJ
- ZMijXm
j=1

p1

T
ij+Mi Zi ij

)

By Young’s inequality, it is easy to see that A;o > 0. And similar to (4.43), there
—1]

[' ] 1 i—1
Ti(ydz_l s Xas 2[i]) = —pr <
17151_11 =

exists a smooth function Ti(yg ; Xa» 2[i]) such that

T'L = z’LFr (yg ]7 Xas Z[’L])

By assumptions A1l and A3, we know that there exist vector-valued smooth func-

tions W;(yy ), xas mi—1y) and Ty (yS ", xay 257), 4 = 1,...,i — 1, such that

W, (y([iz ]7Xa777[i—1]) = ai(yg_l]vxavz[i—l])
i—1

E (yg 1]aXa7O(i71)><1)+ E ( El ]7XaaZ[J])z7
1

<.
Il

Then, for the last term on the right-hand side of (4.46), we have

(4.51)

o, [ ]
82 —1 2 \Ill \I/]_
P T( Zm)‘r 2 .
O[xd » 2zl ™) :
Wi v,

8251 2 9 0=; ! P, D, T
23 %
= %TI’ 8([Xaa [;T_l]}T)Q 6[){2’ Z[Z 1]]T Uy 0,
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Zi

Zi

8251‘ 9 8‘—‘1 ! P4 2, !
P Y=
T B TR L e VT N Yo
2 0=, 0 : .
22— —
a[Xav [2 1]]T \I/l \IIZ
i—1
= | =, [i-1 = i—1
+ = v, ( X ]a Xa> O(ifl)Xl) + Z\Ijlj(yg ]7 Xa> Z[]])ZJ
j=1
-
i—1
T i—1 T i—1
X v, ( u ]7Xa7 O( )X1)+ \I/ (yg ]aXm Z[]])Z]
j=1
T T
oz (e o ] [ @
N B (A L e VT N Yo
2 9=, : :
2o T T 0 v, v,
8[Xa, Z[i—l]] 7 i
2
+25; (\I/ ( ([jz 1]7 Xas O(i—l)xl))TH
i—1 i 5
. - -1 = i—1 -
+2(i — 1)E; Z:j ! H(‘I’ij(yd s Xas z[j]))TH :jz?.
j=1
Choose
(4.52)
- Kq
Si = — -1 1o [i—1 2
E 1@ X O-nys)) I+ 52 E7 (T~ s )7
Then we have
2
2\—%” yd ]7 Xa> O(i—l)xl))TH < 2’%3
i—1 ) i—1
. - —1| i—1 — . -
2(i — 1)Z; Z:j IH(\I'ij(y([i ], Xas z[j]))TH :jz? < 2(i — 1)ky :jz?.
j=1 j=1

By substituting (4.47)—(4.52) into (4.46), we get

X1

(c+x"Px)'™ @

0
(4.53) Vi < —zfdt + o dw — 00, dt = 7i(ya)
_Z‘—‘J<ﬂj_2 Z >Zj2dt_A(y£ll 1]7X7Z[1])dt
m=j+1
+ 282241 dt + 22,5 (o — @-(yg}? Xa> Npip)) dt

+ Cz(yg]7 Xas Z['L—l]) dt7
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where

(4.54)
r; =1i—1(yq), with r;_1 being defined by (4.40),

A; = Ay + Ay, with Ajp and A;o being defined by (4.48) and (4.50), respectively,

i — T Bz
Ni(yg]vxaa Z[Z]):F7,+2,:. + B
+9 b =000 +—1 H”rqﬂb 47+ 50z T
Py =il Zi =il Zj T Oi—1 T =iliz |1
2\ 42 2e2 st 7 !
925, 2( o=, )T 3, o, 1"
Z
IR B oL s 2p gl Uy ||
4=, ) 9=, 0 : : ’
8[X;r’ Z[—/L'r_l]}—r \I]i \Iji

Qi = { o Nz(y5]7 Xa) Z[i])}}zj:njfaj,l,j:L.‘.,i’

2

(4.55) C; =Ci_1+25; , Cj;_1 is given by (4.41).

(Wz(yg 1]7 Xa>s O( )Xl))T'

Now, we choose virtual controller ai(y([ii], Xa> NM}i)) as follows:
(456) QG = az(y([jz]7 Xas 77[1])
Substituting (4.56) into (4.53), we have

0 X1
2 T

_Z“J<5J 2 Z )zf.dt

m=j+1
+ 2822541 dt + Ci(yd s Xa» 2[)) dt.
This completes Step 1.
Step p. It is easy to see that the results of Step ¢ hold also for ¢« = p, where
Np+1 = bmg(y)u. Define the value function V, as in (4.45) with ¢ = p for this step.
Then, V, satisfies (4.57) with ¢ = p. Set z,11 = 0. Then, we arrive at the controller

1 (o]
a y b ch TI b
bmg(y) p( d le] )

(4.58) u(f), Xa, M) =

where «, is defined by letting ¢ = p in (4.56). Let V, =V, —l—E(y[dp_l]7 Xa; z[p_l])z/%.
Then we have

6
(4.59)  dV, < —zfdt+ ap(y([ip U e, z)dw — Zopoz dt
X1 1
g ¢ A

p
—Zuj<ﬁj—2 Z )z dt—l—C(yd,Xa,z[p])d

m=j+1
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where Z2,, 0, rp, A,, and C, are defined in the same way as in Step ¢ (i = 2,...,p—1),
with ¢ being replaced by p.
So far, we have completed the entire backstepping design.

4.4. Properties of the design procedure. In this subsection, we give several
properties of the design procedure above. To avoid duplication of the expression, here
only the case of p > 1 is considered, since the case of p = 1 has the same properties.

By Lemmas B.1 and B.2, we have

lIxI1? 7o (ya) -
(4.60) 7p(Ya) (c+ &)1 > ()‘max(PDl_’YHX” ro(ya) M (c)
2 m ((c+ &) =) —1,(ya) M (c)
= %(ﬁ(ﬁ) —7,(ya) M, (),

where 7,(yq) = 1 (ya) is defined by (4.54) and £ and ¢(§) are defined in (4.10).
Define

= _r (Ya)
(4-61) r(yd) = m7
p
j=i+1
(4.63) CY, Xas 21)) = Cp + 7p(ya) M, (©).

Then, by (4.59) (or (4.35) for the case of p = 1) and (4.60)—(4.63), we have

9 P
(4.64) dV, <o, dw — 1a,,a; dt — 27 dt =T (¢ dt — Y EiBz dt — A, dt + C dt.

i=1

The following lemma presents the method specifying the design constants.
LEMMA 4.2. For any given cost value R; > 0, risk-sensitivity parameter 8 > 0,
and characteristic parameter v € (%, 1), there always exist positive design constants

0,¢,€01,€02,€03,€04,E1,E11, P13+ -+ Bps K15 -+ - Kp, such that the following inequalities
hold:
(4.65) r,>r >0, 8, >0,...,8,>0, and C, < Ry,

where r is constant.

Proof. The proof can be accomplished by properly selecting a set of design con-
stants.

Design constants 8, €g1, and €p2 are chosen such that

(4.66) 0<6<1,

2
(467) 0<en < %,

3
(4.68) 0 < ez < %.
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For given v € (3, 1), even numbers p € {2, 4, 6,...} and p; € {4, 6, 8,...} are chosen
such that

4! p
-1 =S gl
For example, when v = %7 even numbers p > 2 and p; > 4 are proper; when v = %,
then even numbers p > 4 and p; > 4 are proper; when v = %, then even numbers
p > 2 and p; > 6 are proper.

Then, for given v € (%, 1), risk-sensitivity parameter 6, desired positive risk-
sensitive cost value Ry, given output yg, selected 6, €91, p, and p1, and design constants
€03, €04, C, and €1 are chosen such that

P (P) 7
4. min
(4.69) 0 <0 < (12967@— DIEE)

1
4. —
(4.70) O<€O4<V1895’y’

(4.71)

56~ max c. | PF(ya)|?
c > max < 1, [ max Jual = y; H W)l , 1206y max (||P<I)(yd)||2F)v
R1501 ‘yd‘gcyd

106~ max|y,|<c,, Tr(P@(yd)<bT(yd)) }) =
R, ’

b

. 2y 2y
4.72 0<ep < 6| min , —
(*.72) 1 {5@1 N0 KRCES ) 5= DA (PIML ()

P11

P1
YP1
8(p1 — 1) Amat (P)

For given « and selected constants ¢ and ¢, constant 17 is chosen such that

473 0 ¢
. < < —_—
(4.73) 1 1605+ |2

Design constants x1,...,x, are chosen such that
R .

4.74 0<k;=min<1l, — 7, =1,...,p.
(4.74) K; = min { IOp} i p
For given k;’s, design constants (31,...,3, are chosen such that

P
(4.75) Bi>2 > (m=1km, i=1,..p.
m=1i+1

Thus, by (4.54) with i = p, (4.29), (4.18), (4.67)—(4.73), we have 7,(yq) > §67 > 0;
by (4.62) and (4.75) we have 3, > 0,..., 3, > 0; by (4.59) (or (4.35) for the case of
p=1), (4.32), (4.19), (4.67), (4.71), (4.72), and (4.75), we have C,, < R;. 0
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For the value function V,, we have the following lemma.
LEMMA 4.3. There are positive definite, continuous, and radially unbounded
functions Wi (x, z) and Wa(x, z) such that

(4.76) Wi(x 2) < Vo™ x, 2) < Walx, 2).

Proof. Define

p
: = i1
Wilx, 2) = Vo) + > min =5, Xy 2-1)22,
=1 1Wal<Cyysenlyy ‘Scy(i—l)
d
P i
Wa(x; 2) = Vo(x) + Z max EilYq s Xas Z[i-1))%i-

i—1
i=1 |9al SCygoeenlyy ™V 1C iy
d

Then inequality (4.76) holds.

We now show that Wi(x, z) and Ws(x, z) are positive definite, continuous, and
radially unbounded. Clearly, W7 and W5 are continuous. In fact, based on Wi (x, z) <
Wa(x, z) and Wa(0(p4m)x1, 0px1) = 0, it suffices to show that so is Wi (x, 2).

Let us next prove the positive definition and radial unboundedness of W7 by
induction. It is clear that Vp(x) is positive definite and radially unbounded by the
definition (4.10).

By the definition (4.27) of Z;, assumption A3, and the smoothness of ||¥y]|?, we
see that miny,,|<c, Z1(yq) is existent and positive. Thus, VO(X)+min|yd|§cyd Z1(yq)2?
is positive definite and radially unbounded.

Clearly, min o (yg], Xas 21) 18 positive and continuous with re-

lyal <Cygolyg”1SC )

d
spect to (Xq, #1). Thus, by Lemma B.4 in Appendix B we can get the positive definite-

ness and radial unboundedness of V{ min = 224 min
o00Fminy,<c,, Erlya)ziming, <o, ,0i<c g,
d

—_ 1
‘:‘2(y([j ]a Xas zl)zg
[—1]

—1 . —
Suppose that Vo(x) + Zjmymin, o, 6-01co o, SilUd s Xar 2j-1)%
g

d
(i=3,4,...,p) is positive definite and radially unbounded. Then, from the positive-

L . — / [i—1]
ness and continuity of min i =)
Y lya|<C Sy U‘Scy(i—l) Z(yd

» Xas 2ji—1]) and Lemma
SCygoee

d
B.4 in Appendix B, we obtain the positive definiteness and radial unboundedness of

%

. = [i-1
Vo0 + ) min =58 7 Xas 2512
j=1 lya|<Cyyyeesluy ‘Scy(j—l)
“d
Thus, by induction, Wi (x, z) is positive definite and radially unbounded. 0

The following two properties are largely straightforward.
PROPERTY 4.1. If the design constants are chosen such that inequalities (4.65)
hold, then we have

0
(4.77) dv, < —(y —ya)?*dt + o, dw — Zapaj dt
— l(y([ffl], X, z[p]) dt + Ry dt + r(yq) M~ (c)dt,

where | = T(ya)d(€) + >0_, ZiB;22 + A, is nonnegative.
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Proof. By (4.59) (or (4.35) for the case of p = 1) and (4.65) one can easily get
(4.77). d

PROPERTY 4.2. If design constants are chosen such that inequalities (4.65) hold,
then

(4.78) LV, < —2i+ Ry,

(4.79) LV, < —c1V, + ¢,

where constants ¢ and co satisfy

(480) {CIZmin{ls)\"”’;(ID)7ﬁlaﬁQa"'aﬁp} > 07
¢z = Ry 4 maxy, rp(ya) M, (c).

Proof. When design constants are chosen such that inequalities (4.65) hold, then
(4.78) comes from (4.77), and (4.79) comes from (4.61)—(4.64), V, = ¢(&)+>_0_; Ei27,
and

F(ya) > c1, By > c1,....8,>c1, and C<cy. O

5. Main results. In this section, we summarize the main results of this paper
as a theorem.

THEOREM 5.1. Consider the system (3.1) and the tracking risk-sensitive cost
criterion (3.2). Suppose that assumptions A1-A3 hold. Then, for any given risk-
sensitivity parameter @ > 0 and desired cost value R; > 0, there exists an output-
feedback controller such that the closed-loop system

1. has a unique solution on [0, 00) almost surely,
2. admits a guaranteed cost value Ry for the risk-sensitive cost criterion (3.2),
3. is bounded in probability.

Proof. We prove this theorem only for the case of p > 1 by construction. The
proof for the case p = 1 is similar and straightforward, and so is omitted here.

For any given risk-sensitivity parameter § > 0 and desired cost value R; > 0,
section 4 provides a constructive design procedure of an output-feedback risk-sensitive
controller. From Lemma 4.2, it is easily known that there are design constants such
that inequalities (4.65) hold. Then, Lemma 4.3, (4.59), and the first two statements
of Theorem A.1 imply statements 1 and 2.

Property 4.2, together with the third statement of Theorem A.1, leads directly to

the boundedness in probability of [x ', z[;]]T. To show statement 3, let us first show

the boundedness in probability of [n1,...,n,] .

By m =y = 21 + yq and assumption A3, it is easy to see that 7; is bounded
in probability. Suppose that [n1,...,m,_1]" is bounded in probability for k (k =
2,...,p). Then by nx = 2z + ak,l(yc[lkfll,xa, Nk—1]), the smoothness of ax_1, and
assumption A3, we know that 7, and hence [n;,...,m:] ", is bounded in probability.
Therefore, by induction, [n,..., np]T is bounded in probability.

Thus, by 101,30 CT]T = Ty, Thly, oy ..., Tp) T and x = [¢T, 27]7, it is

easy to derive that T and [y, Zo,...,%,] are bounded in probability. This, together
with y = x1, 1 = y — 71, and [2a,...,2,]" = [Ta + Ta,..., Ty + Tn), leads to the
boundedness in probability of [z ", ZT]T. That is, statement 3 is true. |

Remark 5.1. As for the value range of characteristic parameter  in value function
V, (or Vi given by (4.10)), the following two points are considered. First, since
Xp is unknown, in order to guarantee stability of the closed-loop system, we use
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—% dt to dominate the term Mjxpz1 dt on the right-hand side of (4.22).

This requires that the power 2y of x; (or x) in the term % dt on the right-
hand side of (4.22) be greater than 1, the power of x; of Mjxpz1 dt, that is, v > 1/2.
Second, to deal with the term ogdw on the right-hand side of (4.13), we use the

technique of subtracting and adding gaoag dt on the right-hand side of (4.13). The

negative term fﬁagaoT dt is used to control the term oy dw, while the positive term

0
4
to require that the power 2y of x in %?HX”Q be greater than 4y — 2, the power of x

090g dt is dominated by term ,%? || x||? dt and the system input. Thus, it is natural

in ooy ; that is, 2y > 4y — 2, or equivalently, v < 1.

6. Example. Consider the second-order system

1
dx1 = xodt + udt + §y2dw7
dzy = udt,
Yy=2a1.

The purpose is to design u based on only y such that the output y of the closed-loop
system tracks the sinusoidal signal:
ya(t) = asin(wt), a=2, w=2.
Clearly, in this case, we have n =2, m =1, p=1, and h(y) = [53y% 0]".
Design the following state observer:

Pr=Ta+ki(y— ) +u, k=1,
i'\g = k’g(yf‘/fl)ﬁ*u, ]{52 =1.

Then, the estimation error # = [x; — &1, T2 — T3] | satisfies the following equation:

-1 1

dz = { 10 ] Zdt + h(y)dw 2 Azdt + h(y)dw.

Set ¢o = [y, Z»] T. Then we have the following dynamical equation for cy:
do=] 0 Va0 are |t | mars | P Juars | 27 |a
=10 0] & 0" 1] I

Let §1=T1§0,T1=[_11 0},Tf1:“ (1)} Then we have

1 0 2

1 1 ~ 1
1 _1:|§1dt+|::f1:|dt+|:_1:|l'2dt+|:0:|udt+|:

Let n = [n1, 772]T =¢; and ¢ = 1. Then we have 171 = y and the following dynamics
used to control design:

1
2y
4

d¢; =
! [ —3Y

9 ]dw.

dz = Azdt + h(y)dw,
~ - 1
d¢ = (-C—y+x1 — To)dt — §y2 dw,

. 1
dy:(c+y+u+x2)dt+§y2dw.
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In this case, we have

-1 1 -1
W = 0 -1 1
0 -1 0

By solving Lyapunov equation W' P + PW = —I3, we get

0.5000  0.3333 —0.1667
P = 0.3333 1.5000 —0.6667
—0.1667 —0.6667 1.6667

Clearly, P is symmetric and positive definite. The eigenvalues of P are 0.3978, 0.9476,
2.3213, and thus, A\pin(P) = 0.3978, Anax(P) = 2.3213.

Let v= %7]9 = 27p1 = 47 21 =Y~Yd; Xa = [Cv El]Ta ga = XI(P17P2P71P2T)XCL
0.4833¢% + 1.2333%2 + 0.5332¢7;. Then we design the controller u(yl[ill, Xas 1) =
a1(y([11]7 Xa, 71) as follows:

z1 Ny
= <¢—N; — i
a1 { 1 2':1 2':'1 }

Z1=N1—Yd
with Z; = ;%7 and
025938 1 4062 (y + y4)?(0.5834F; — 0.0833()22,
T, (e+&)E 9 (c+€)3
. 3.226106% (¢* +77) (2yg + 27 (y + va)®) (y +ya)* 21
634 C+§a
0.2993062 9. 9 oo 6 (y+wa)i=
——  WHu) W i)+ 5
€83 ( A ¢ 3 (C+§a)%
e 21 021, 2 _3.4 0_ y'\ 4
Ny =(¢— — — — = =B |1+ ==
1 =0 dat At am g, vt aEiEA T gE I g JyTa

- i(y +ya)*21.

Here, the desired cost value R; is set to 0.5. Accordingly, the design constants in
Lemma 4.2 are chosen as § = 0.9, 0 = 0.2, eg1 = 0.3, g2 = 0.3, g3 = 0.32, g4 =
0.68, ¢ = 100, g1 = 0.1, €11 = 0.29, k1 = 0.05, B; = 40; the stochastic disturbance
‘fi—‘t” is chosen to be Gaussian white noise with power 1; and the initial conditions are
simply set to z1(0) = 0.8, z2(0) = 0, Z1(0) = 0, Z2(0) = 0.

The simulation results are shown in Figures 1-4 given below. In particular, Fig-
ure 1 is about z7 (solid line) and its estimation Z; (dashdotted line); Figure 2 is
about xs (solid line) and its estimation Z5 (dashdotted line); Figure 3 is about de-
sired output y4 (solid line), system output y (dashdotted line), and tracking error
y — yq (dashed line); Figure 4 is about control input u; Figure 5 gives a diagram of
1 fg(y(s) — ya(s))?ds, used to demonstrate the validity of the design. From Figure 3
and Figure 5 we can see that the system output tracks the desired output ideally.
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F1c. 1. System state x1 (solid) and observer state &1 (dashdotted).

25 L L L L L L L L L

Fic. 3. Desired output ygq (solid), system output y (dashdotted), and tracking error y — yq
(dashed).
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_50F 4

—60 L L L L L L L L L
o

Fic. 4. Control input u.

Fic. 5. % [1(y(s) — ya(s))2ds.

7. Concluding remarks. In this paper, the practical output-feedback control
design problem of stochastic nonlinear strict-feedback systems in observer canonical
form with stable zero-dynamics under a long-term tracking risk-sensitive cost criterion
is investigated. A state observer is designed to guarantee an exponentially convergent
state estimate when there is no disturbance. By introducing a state-transformation,
we transform the system with the state observer in the loop into a lower triangular
structure. And then, for any given risk-sensitivity parameter and desired cost value,
by using an integrator backstepping method, we present constructively the output-
feedback control design algorithm. The cost function adopted here is of quadratic form
usually encountered in practice, rather than the quartic one used to avoid difficulty on
controller design and performance analysis of the closed-loop systems. It is shown that
under our control design (a) the closed-loop system is bounded in probability, and (b)
the long-term average risk-sensitive cost of the closed-loop systems is upper bounded
by the desired value. Besides, the value range of the characteristic parameters of the
value function is investigated. As a special case when system vector nonlinearity and
stochastic disturbance vector field vanish at the desired output 34, it can be expected
that there exists a control such that the closed-loop system is asymptotically stable
in the large and admits a zero risk-sensitive cost. This question is now under study.
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Appendix A. Preliminary results. In this appendix, we give the definitions of
bounded in probability and asymptotically stable in the large, as well as a key theorem
to present the sufficient conditions for these two stability notions.

For a general control-free stochastic nonlinear system,

(A1) dz = f(t,z)dt + h(t, z)dw, x(ty) = w0,

where z is an n-dimensional state vector, n € N; f : [0, co) x R* — R™ and
h: [0, c0) x R® — R"*5 s € N, are assumed to be continuous in ¢ and locally
Lipschitz in z; w is an s-dimensional vector-valued Brownian motion defined on a
probability space (Q, F, P); to > 0 and zo € R™. Denote the solution to (A.1) by
Lto,z0 (t)

DEFINITION A.1. The solution process {xi, z,(t), t > to} is said to be bounded
in probability if

lim sup P{||zi @) >} =0.

€T tefto, 00)

DEFINITION A.2. Consider the system (A.1l), with f(t,0n,x1) = Opx1 and
h(t,0nx1) = Onxs Vt > 0. The identically zero solution process is said to be asymp-
totically stable in the large if Ve > 0, tg € [0, o),

lim P {sup lt,20 (B)]] = 8} =0
>0

llzol|l—0% t>

and Yz € R", Vtg € [0, o0),
7?{ lim 4, 0, (£) = onxl} — 1.
t—oo

The following theorem gives the sufficient conditions for the above two stochastic
stability concepts.

THEOREM A.l. Consider stochastic nonlinear system (A.1) and the following
risk-sensitive cost criterion:

T
(A.2) Jp = lim sup % gln (E (exp (Z/ q(t, 20,4, (t)) dt>>> ,
T—o0 0

where 0 > 0 is the risk-sensitive parameter and q : [0, co) x R™ — R is a nonnegative
continuous function. For any 6 > 0 and any desired cost value Ry > 0, if there exists
a nonnegative value function V : [0, co) x R™ — R, which is C' in the first argument
and C? in the second argument; a continuous function o : [0, 0o) x R® — R1X$; ¢
nonnegative continuous functionl: [0, co) xR"™ — R; and a nonnegative, continuous,
and radially unbounded function W1 : R™ — R such that

(A.3) Wi(z) <V (t,x) Y(t, z) €0, 00) x R™,
(A.4) dV(t, x) = o(t, ) dw — Za(t, z)(o(t, z)) " dt —I(t, z)dt
—q(t, x)dt + Ry dt Y(t, ) € [0, o0) x R™,

then the following statements hold:
1. The system (A.1) has a unique solution on [tg, 00) almost surely Vto > 0.
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2. Jop(xo) < Ry Vxg € R™.
3. If, in addition, there are constants c¢jy € (0, 00) and ¢2 € (0, 00) such that

(A.5) LV (t,x) < —enV(t, ) + 2 Y(t, z) € 0, 00) x R™,
then the solution of system (A.1) is bounded in probability.

4. If, in addition, f(t, Onx1) = Onx1, h(t, Opx1) = Opxs V& > 0, Wy is positive
definite, Ry = 0, and there exist a continuous and positive definite function
Wy : R™ — R and a positive definite function W3 : R™ — R such that
(A.6) V(t, z) <Wa(z) V(t, z) €0, o) x R",

0
(A7) Zo(t, z)(o(t, ) " 1(t, )+ q(t, ) > Ws(x) Y(t, x) €0, oo) x R,

then the zero solution of the system (A.1) is asymptotically stable in the large.
Proof. Define Vev + R;. Clearly, Vis nonnegative and satisfies

£V =200t 2)(o () ~1(t, 2) —qlt, ) + Ry <V
and

lim inf XA/(t,w) > lim inf Wi(z) =00 Vi€ |0, 00).

T—00 ||z|[>7 =0 |z >r

Then, by Theorem 4.1 of Chapter III of [21], statement 1 follows.
For statement 2, fix to = 0 and zp € R”. By (A.4), we have

T
V(Ta L0,z (T)) +/O (Q(t, xoyﬁ?o(t)) + l(t’ ‘To,mo(t))) dt
V.20 + [ alt a0, (0) du

T
— g/ o(t, £0.2o (1)) (0 (t, 20,2 (1)) T dt + Ry T VT > 0.
0

This implies that

L2((ew (3 [t romar)))
<12, (E(p (g (v(T, To,00(T)) + / (0t 0 (0) 4108 30.,0) dt))))
VO 2 (e (3 " o(t, 0,00 (1)) du

o " ot .m0 )0t 0 (1) a))))+m.

N

IA

Let, VT > 0,

(T) 2 exp ( /0 ga(t, T0.0y (£)) duw — % /0 o, 30,00 () (0t 20 00 (£))) dt).
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Then (7)) is a supermartingale (see [33]), and E(¢(T)) < E(¢(0)) = 1 VT > 0. Thus,

we have

Jo(z0) < limsup

T—o0

(ngw+;§mE«wm+RQSRw

This establishes statement 2.
For statement 3, fix ¢y € [0, 00) and z¢ € R™. Let

alc) = inf  Wi(z) Vee|[0, 00).

||z||>c, zeR™

Then, by (A.3) and (A.5), we have, for sufficiently large ¢ € [0, co) and any ¢ > o,

mWWMM>@=AhmmeMMﬂM)

:/ Hjjwag o 011>} W1 (Z10,20 (1))
Q Wi (wto,xo (t))
 EWi(@00(1)) _ E(V(t 2100(1)))
- a(c) - a(c)
< V(to, o) + cia/cnn
- a(c) '
Since the fact that W7 is radially unbounded implies that a(c) — oo as ¢ — oo, then

statement 3 follows.
For statement 4, we note that V is clearly positive definite,

P(dw)

0< lim supV(t, z) < lim Wy(x)=0,

T—0nx1 ¢>0 T—0px1

which implies that V' has infinitesimal upper limit, LV (¢, z) = —%0(t, 2)(o(t, 2))" —

I(t, z) — q(t, ) < —W3(x) V(t, x) € [0, o0) x R™, which is negative definite, and

lim inf inf V(¢, ) > lim inf Wi (z) = oo.
R—oo [|z||>R, z€R™ >0 R—oo ||z||>R, z€R”

By Theorem 4.4 in Chapter V of [21], the zero solution of system (A.1) is asymptoti-
cally stable in the large. |

Appendix B. Technical lemmas.

LEMMA B.1. Let n € N, P be an n X n-dimensional symmetric positive definite
matrix, v € (%, 1),

I, (z,c) = ||x|\27)\g;}1((P) —(c+ xTPx)7_1||acH2 Vz € R", Ve € (0, 00),
and

M, (c) = sup 1L (z,¢) Ve e (0, 00).
z€ER®

Then IL,(z,c) > 0 Vo € R", Ve € (0, c0); and M., is strictly increasing on (0, c0);
and

lim M, (c) =0, lim M, (c) = +oc.

c—0t+ c——+o00
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Proof. Clearly, for any nonzero vector z € R, we have
II(z, ¢) > I(xz,0) =0 Ve e (0, c0).
From this together with II(0,x1, ¢) = 0 Ve € (0, 00), it follows that II,(z,c) > 0
Vo € R, Ve € (0, 00).

Let us next prove the properties of M.,. From the definitions of A\pnax(P) and
Amin (P), it follows that for any nonzero vector z € R™,

P
Amin(P) < x -

< —%5 < Amax(P)-
]|

Further, by v < 1 we have for any nonzero vector x € R",

ML (20) < [olPN(P) = (e-+ Amax (P) ol ol
y—1
= e (1 (14 ) )
Dl M P

)\771 P 2y 1=y
(Pl 7_1(<1+A (;”'x'Q) _1>
1+ somomr) max

_ 1-19)
< N2LP)|||> <1+C(—1>
( )H ” )\max(P)||-r||2
= (1= Aax(P)llz]?—

max

—0 as ||z|| — oo,

where we have used the following inequality: (1+a)” < 14ar Va € [0, 00), Vr € (0, 1).
Let

Xo={z € R" : Pr = A\pax(P)x}.
Then it can be shown that for any constant ¢ > 0,

My(e) = sup - ILy(x,¢) = AJx(P) = (¢ + Amax(P)) ™" > 0.
€ Xo,|lz]=1
Therefore, there is a nonzero x; € R™ at which IL,(z, ¢) reaches its maximum. Fur-

thermore, we can show that z; € Xj, since otherwise there would be x| Pr; <
Amax (P)||71]]2. Take z¢ € Xy such that ||xo|| = ||x1]|. Then,

IL, (w0, ¢) = ||zo]|* Adran (P

max

(P) = (c+ g Pao)"™"|o?

= [l Nax (P) =
(P) -

)_

¢ 4 Amax (P)||o]|?) 7 |2o] 2
¢+ Amax(P) |21 ]12) 21 ||

c—i—a:lTPacl)'y_lelW.

max

= [lo1 [P Nk (P

max

> [l N (P

max

~ o~~~

This contradicts the fact that z; is the maximum point of I, (z, c).
Thus, there must be

M, (¢) = sup IL,(z,c) = sup II,(z,c)
TER™ zeXy

- [zl A (P) = (€ 4+ Amax (P)l|21) 7~ [l]1?]
z€X)
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In other words, the vector maximization problem has been transformed into a scalar
one in « of the following two-variable function f(«, ¢):

fla,e) = XL EH(P) — (e 4 Amax(P)a) ta.
That is, for any given ¢ > 0, we have

M, () = sup f(a;, ).

a>0
Noticing that

Af (e, c)
de

we know that f(q,c) is a strictly increasing function of ¢ for fixed o € (0, 00). It
can also be shown that M, (c) is strictly increasing; i.e., for any 0 < ¢; < co there
is always 0 < M, (c1) < My(c2) due to the following argument. Let a., maximize
fla, 1), or My (ag,, ¢1) = f(ae,, ¢1) = sup,>g f(a, ¢1). Then by the monotonicity
of f(«, -), we have -

My (e1) = flae,, 1) < flae,, c2) < sup fla, ea) = My(ca).

a>0

=1 -9 (c+ Max(P)2)"2a > 0 VYa >0, Ve>0,

Note that, Vc € (0, o) and Vo € R™ with x # 0y, %1,

max

l2]*7 A (P)

max

" (e Amax(P)[2[2) T

2'y)\'y—1 P 1—~
_ ||:EH max( 2) — 1+ c 5 )\rln—a;y((P)”xHQ(l—’Y)
(€ + Amax (P)|[z]|) = Amax (P)||z|

- W(P)nxn?w)

max

o2 c
(e Amax(P)[2[D) T ( (1 i Am<P>Ilwll) B 1)
[ c(1-7)
(¢ + Amax (P)|Z[|2)1=7 Amax (P) | [|?
_ 1= ) (max(P)) !
(€ + A (P)[2[2) =7

1L (2, ¢) < [l N5 (P) = (¢ + Amax(P) [J2]|*)7 |||

(e Amax (|27 = AL (P |20 )

<

Clearly, we have I1,(0y,x1, ¢) =0 < 0(1_7)((3‘)?¢ Ve € (0, 00). Then,

-

c(1 - 7)()‘maX(P>)_1
(¢ + Amax (P)[|lz[[2)1 =7

This implies that, Vc € (0, c0),

I, (z, ¢) <

Ve € (0, ), Vo € R™.

C(l - 'V)O‘maX(P))il
— <
Male) = sup Iy(w, 0) < Sup o S P2

Clearly, M (¢) > 0 Ve € (0, c0). Moreover, we have

= 1= 7)Oamax(P) .

0< lim My(c) < lim ¢7(1 —7)(Amax(P)) "+ = 0.

c—0+t c—0+
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We now show

(B.1) lim M, (c) = +o0,

c——+oo

since otherwise, by the fact that M., (c) is strictly increasing in [0, 00), lime_, 4 o0 M (c)
1

would be existent and finite. Let T = limc_. 4. Mo (c). Then for ¢ = (1 — 5225) 7 -

(2)\maX(P)T)%, we would have M., (c) > f(cA L (P),c¢) = 2T > Y. This contradicts

max

T = limc 400 My(c) and the fact that M, (c) is strictly increasing in [0, 00). Thus,
(B.1) is true. O

Remark B.1. Lemma B.1 means that the difference between term ||z||*? AL (P)
and term (¢ + " Pz)?Y~1 |lz||? is less than or equal to M., (c), which is arbitrarily
close to zero as constant c is.

LEMMA B.2. Letn € N, P € R"*" be symmetric and positive definite, ¢ € [0, 00),
and v € (3, 1). Define the function

A (z,¢) = (c+a Px)" = — \]

max(P)||m||2ﬂy7 Ve Z 07 Vo € R™.
Then we have

(B.2) Ay(z,c) <0 VzeR", Ve>0.

_ Proof. Let z = ||z]|* and A,(z,¢) = (¢ + Amax(P)2)? — ¢ — AL (P)27. Then,
Ay (z,¢) > Ay(z,c)Ve >0, and for any z > 0 and ¢ > 0,

aZ»Y(Z, C) . 'Y)\max(P) o ’y)"rynax(P)
0z o (C + )\mza)((—P)Z)l_’Y 21
’yAwmax(P> /y)‘glax(P)

- <0.
~ (cAmax(P) + 2)1-7 2= T

This together with A, (0,¢) = A,(0,¢) = 0 gives (B.2). O
Remark B.2. From Lemmas B.1 and B.2, we know that for any x € R**" there
exist the following inequalities:

B3 I < ) (Moo + ),

T [IxII”
(C+X PX)'Y —c7 < Amax(P) (M’Y(C) + W .
LEMMA B.3. For any given constants a1 and ag satisfying 1 < a1 < aq, set
far, ap () = 2% — %2 V2 > 0, and
ay

{IC(UJ;GQ) - aQG;al (%) e lf aq < as,
K(al,ag) =0 if a]; = as.

Then

(B.4) SUp far, e, (@) = K(a1, az).

x>0

Proof. When 1 < a; < ag, by %fm,@ (x) = ayz® 1 — axz®2~! = 0, we see that

fa1,as () achieves its maximum at z,, = (Z—;)%ial . Substituting z,, into fa,, a, ()
leads to (B.4).



924 YUN-GANG LIU AND JI-FENG ZHANG

When a; = a1 > 1, (B.4) is obvious since, in this case, fq, 4,(z) = 0 and
lC(al, ag) =0. O

LEMMA B.4. For positive definite and radially unbounded functions V; : R™ — R
and Vo : R — R, and a positive continuous function = : R™ — R*, m € N, define
V(X, z) = Vi(X) +E(X)Va(z). Then, for any [X T, x| # O(m+1)x1, V(X, x) >0,
and in addition, if \/||X||? + 22 — oo, V(X, ) — oo. That is, V(X, x) is positive
definite and radially unbounded.

Proof. We first show the positive definiteness of V(X, z). From [X T, z]T #
O(m+1)x1 Wwe have either X # 0,,x1 or X = Opx1 and x # 0. If X # 0,,x1, then we
have V(X, z) > V1(X) > 0. If X = 0,,%x1 and = # 0, then by the positiveness of =
we have V(0pmx1, ) > Z(0mx1)Va(z) > 0. Clearly, V(0,,x1,0) = 0. Thus, V(X, z)
is positive definite.

Let us next show the radial unboundedness of V (X, x) by contradiction. Suppose
there were a sequence of { Xy, zx, k € N} satisfying limy o0 (|| X&|| + ||2k|]) = oo and
a constant C' > 0 such that V(Xj, ;) < C < oo Yk € N. Then, there would be
V1(Xk) < CVEk € Nand E(X;)Va(zr) < C VEk € N. Noticing the positive definiteness
and radial unboundedness of V;, one can show that there is a constant 6; (C) > 0 such
that

(B.5) [ Xkl < 6:(C) VkeN.

Let M = min| x| <s,(c) Z(X). Then, by the positiveness and continuity of = we have
M > 0. Thus, Va(xy) < % Vk € N. This together with the positive definiteness and
radial unboundedness of V5 in turn implies that there exists a constant 62(C'/M) > 0
such that

(B.6) ekl < 62(C/M) Yk € N.

From this and (B.5) we have || Xg| + ||zx]| < 61(C) + 62(C/M) < oo Vk € N, which
contradicts limy o0 (|| X || + || zk|]) = c0. Thus, V (X, z) is radially unbounded. O
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