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PRACTICAL OUTPUT-FEEDBACK RISK-SENSITIVE CONTROL
FOR STOCHASTIC NONLINEAR SYSTEMS WITH STABLE

ZERO-DYNAMICS∗

YUN-GANG LIU† AND JI-FENG ZHANG‡

Abstract. This paper addresses the design problem of practical (or satisfaction) output-feedback
controls for stochastic strict-feedback nonlinear systems in observer canonical form with stable zero-
dynamics under long-term average tracking risk-sensitive cost criteria. The cost function adopted
here is of the quadratic-integral type usually encountered in practice, rather than the quartic-integral
one used to avoid difficulty in control design and performance analysis of the closed-loop system. A
sequence of coordinate diffeomorphisms is introduced to separate the zero-dynamics from the entire
system, so that the transformed system has an appropriate form suitable for integrator backstepping
design. For any given risk-sensitivity parameter and desired cost value, by using the integrator
backstepping methodology, an output-feedback control is constructively designed such that (a) the
closed-loop system is bounded in probability and (b) the long-term average risk-sensitive cost is upper
bounded by the desired value. In addition, this paper does not require the uniform boundedness of
the gain functions of the system noise. Furthermore, an example is given to show the effectiveness
of the theory.
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1. Introduction. Research on global stabilization control design for nonlinear
systems has been accelerated over the last two decades. After the celebrated charac-
terization of the feedback linearizable systems (see [13]), a breakthrough was achieved
with the introduction of the integrator backstepping design methodology (see [20]),
which provides a general constructive tool for designing global stabilization controls
for nonlinear systems in or feedback equivalent to strict-feedback form. Since the early
1990s, a series of research results on strict-feedback systems have been obtained by
using this methodology together with other design tools, such as nonlinear damping,
tuning functions, and MT filters (see, e.g., [8], [15], [18], [19], [22], [23], [32], [34],
and [38]).

The research on risk-sensitive control can be traced back to the early 1970s, when
Jacobson introduced the linear exponential quadratic Gaussian (LEQG) problem (see
[14]). Then, Whittle put a risk-sensitivity parameter into the cost, and solved the
linear discrete-time problem (see [39]). Bensoussan and van Schuppen considered
the continuous-time case in their paper [4]. But the significance of the risk-sensitive
control was not fully realized until the 1990s. It has been known that risk-sensitive
control is more general than H∞ control and H2 control, and closely related to differ-
ential game problems (see, e.g., [9], [10], [17], [31], [37], and [40]). For example, when
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the noise vanishes, the large deviation limit of the risk-sensitive control is nothing
but a deterministic differential game problem. These connections have initialized and
accelerated the research on stochastic risk-sensitive controls over the last decade.

The design of controls for strict-feedback stochastic nonlinear systems has received
intense investigation recently (see, e.g., [1], [5], [6], [7], [11], [26], [27], [28], [29], [33],
and [35]), where [7], [11], and [33] considered full state-feedback control design, and
[1], [5], [6], [26], [27], [28], [29], and [35] considered output-feedback control design.
Under the assumption (A), “the disturbance vector field vanishes at the origin,” [5],
[7], and [11] studied the problem of designing a control to asymptotically stabilize the
closed-loop systems in the large. Meanwhile, [1], [6], [26], [27], [28], [29], [33], and [35]
considered the control design to achieve the boundedness in probability of the closed-
loop system without using assumption (A). Specifically, [7] considered the disturbance
attenuation problem; [35] considered the stabilization problem of systems with stable
zero-dynamics; [33], [26], [1], and [29] considered the design of satisfaction control
under a quadratic, a quartic regulation, and a quadratic tracking risk-sensitive cost
criterion, respectively. [1] used the assumption (B), “the gain functions of stochastic
noise are uniformly bounded,” while [26], [29], and [33] did not; [27] and [28] consid-
ered the reduced-order observer-based stabilization control design of the single-input
multioutput stochastic nonlinear systems.

This paper studies the problem of output-feedback control design for a class of
stochastic nonlinear systems in observer canonical form with stable zero-dynamics un-
der a quadratic tracking risk-sensitive cost criterion. In general, the design of output-
feedback control is more difficult and challenging than that of full state-feedback
control. Since the early 1990s, a general framework for studying output-feedback
control problems has been developed. The key thought is to first introduce the so-
called information state, which is a generalization of observer or filter, and then, by a
measure transformation, to change the output-feedback control design problem into a
full state-feedback problem of an augmented system (see, e.g., [2], [3], [12], [16], and
[17]). However, generally speaking, the equality (or inequality) of the information
state satisfied is infinite-dimensional, to which an explicit finite-dimensional solution
exists only for linear or special nonlinear systems (see [2]). The method of this paper
is different from the information state one and can be used to deal with more general
inherently nonlinear systems. The objective of this paper is very practical: to search
for a satisfaction control rather than an optimal one. This makes it possible to avoid
the measure transformation. In order to get the explicit formula of the control, strict-
feedback nonlinear systems are considered. The main results of this paper indicate
that for any given risk-sensitivity parameter and desired tracking risk-sensitive cost
value, a dynamic output-feedback control can always be constructively designed so
that the closed-loop system is bounded in probability and the long-time average risk-
sensitive cost is upper bounded by the desired value. While [1] considered assumption
(B) to be essential, the current paper does not use this assumption. In addition, the
value range of the characteristic parameter of the value function used for backstepping
design is enlarged from 2

3 (see [26]) to set ( 1
2 , 1). This provides control designers with

a freedom in choosing the value function.
The remainder of the paper is organized as follows. Section 2 provides some no-

tation. Section 3 describes the system model and formulates the control objective
to be studied. Section 4 describes the constructive design procedure of the control
by employing an integrator backstepping approach, and presents several important
lemmas for the closed-loop performance analysis. Section 5 addresses the main results
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of this paper. Section 6 gives a simulation example to illustrate our theoretical find-
ings. Section 7 gives some concluding remarks. The paper ends with two appendices.
Appendix A introduces the definitions of stability notions asymptotically stable in the
large and bounded in probability, and gives a key theorem of sufficient conditions for
the solvability of the control problem. Appendix B provides some technical lemmas
that play an important role in the control design and performance analysis.

2. Notation. Throughout this paper, N denotes the set of all natural numbers;
R denotes the set of all real numbers, and R

n denotes the real n-dimensional space,
n ∈ N; Ci denotes the set of all functions with continuous partial derivative up to
ith order, i ∈ N, and C∞ denotes the set of all smooth functions; for a given vector
or matrix W , we use W� to denote its transpose; Tr(W ) denotes its trace when
W is square, i.e., the sum of all elements on the main diagonal line; we use |W | to
denote the absolute value for scalar numbers, and ‖W‖ to denote the Euclidean norm
for vectors and the corresponding induced norm for matrices; we also introduce the
Frobenius norm of W defined by ‖W‖F =

√
Tr(W�W ) with properties: ‖W‖ ≤

‖W‖F and ‖WV ‖F ≤ ‖W‖‖V ‖F for any matrix V with appropriate dimension; for
any x ∈ R

n, xi denotes its ith element, x[i] denotes the column vector consisting of

the first i elements of x in the original order, i.e., x[i] = [x1, . . . , xi]
�; for any given

ith continuously differentiable function yd(t), y
(i)
d (t) denotes the ith derivative with

respect to the time variable t, the first and second derivatives are denoted by ẏd and

ÿd, respectively, and y
[i]
d denotes the (i + 1)-dimensional column vector consisting

of yd, ẏd, . . . , y
(i)
d , i.e., y

[i]
d = [yd, ẏd, ÿd, . . . , y

(i)
d ]�. Obviously, x[1] = x1, x[n] = x,

y
[0]
d = yd. 0i×j denotes the (i× j)-dimensional matrix with all zero elements and will

be written as 0 for brevity when there is no confusion caused. We use Ii to denote
the i × i identity matrix. For a set A, IA denotes the characteristic function of the
set. For any given symmetric matrix P , λmax(P ) and λmin(P ) denote its maximum
and minimum eigenvalue, respectively.

In addition, when a function shows up for the first time, we will clearly write out
its arguments, and then, for simplicity of expression in later use, we sometimes drop
the arguments when no confusion is caused.

For a given stochastic system

dx = f(t, x) dt + h(t, x) dw, x(t0) = x0,

define a differential operator L :

LV (t, x) =
∂V (t, x)

∂t
+

∂V (t, x)

∂x
f(t, x) +

1

2
Tr

(
∂2V (t, x)

∂x2
h(t, x) (h(t, x))�

)
,

where x is an n-dimensional state vector, n ∈ N; f : [0, ∞) × R
n → R

n and
h : [0, ∞) × R

n → R
n×s, s ∈ N, are assumed to be continuous in t and locally

Lipschitz in x; w is an s-dimensional vector-valued Brownian motion defined on a
probability space (Ω, F , P); and V : [0, ∞) × R

n → R is C1 in t and C2 in x.

3. Problem formulation.

3.1. System model. We consider the stochastic nonlinear systems in observer
canonical form with zero-dynamics of the form (see [35]):
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dx1 = x2 dt + f1(y) dt + h1(y) dw,

...

dxρ−1 = xρ dt + fρ−1(y) dt + hρ−1(y) dw,

dxρ = xρ+1 dt + fρ(y) dt + bmg(y)u dt + hρ(y) dw,(3.1)

...

dxn−1 = xn dt + fn−1(y) dt + b1g(y)u dt + hn−1(y) dw,

dxn = fn(y) dt + b0g(y)u dt + hn(y) dw,

y = x1,

where x = [x1, . . . , xn]� is the n-dimensional state vector, n ∈ N, and its initial
value x(t0) = x0 is fixed but unknown; u is the scalar control input; y is the scalar
measurable output; fi : R → R, i = 1, . . . , n, are the system nonlinearities depending
only on output y; hi : R → R

1×s, i = 1, . . . , n, are the gain functions of the system
noise depending only on y, s ∈ N; g : R → R is the nonlinear gain function of the
control input u depending only on y; w ∈ R

s is a vector-valued standard Brownian
motion defined on probability space (Ω,F ,P), with Ω being a sample space, F being
a filtration, and P being the probability measure, s ∈ N; m ∈ N satisfies 0 ≤ m < n;
and ρ = n−m ∈ N is the relative degree of the system.

The main results of this paper are based on the following assumptions:
A1. The nonlinear functions fi and hi (i = 1, . . . , n) are smooth. That is, fi ∈ C∞

and hi ∈ C∞; the nonlinear function g is continuous; and, for any y ∈ R,
g(y) �= 0.

A2. All the roots of the polynomial bmsm + · · ·+ b1s + b0, bm �= 0, have negative
real parts.

A3. Desired system output yd is deterministic, and it and its derivatives ẏd, . . . , y
(ρ)
d

are known and bounded; i.e., there exist known positive constants C
y
(i)

d

,

i = 0, . . . , ρ, that bound the reference trajectory yd and its derivatives.
Assumption A1 is standard for this class of control problems, to ensure that fi

and hi (i = 1, . . . , n) are local Lipschitz functions and, together with assumption A3,
to ensure the global boundedness of hi(yd) (i = 1, . . . , n). Assumption A2 ensures
that the zero-dynamics are stable.

Unlike the problem of feedback stabilization, there is no need to require that the
origin x = 0n×1 be the equilibrium point of the open-loop system. This is because
the purpose of the tracking control is to make the system output conform to the
time-varying desired system output yd(t), rather than to steer the system state to the
origin x = 0n×1.

3.2. Control objective. The goal of control design is to make the solution
process of the system (3.1) be bounded in probability and the following quadratic
tracking risk-sensitive cost criterion achieve a predefined long-term cost value:

Jθ(y) = lim sup
T→∞

1

T

2

θ
ln

(
E

(
exp

(
θ

2

∫ T

0

(y − yd)
2 dt

)))
.(3.2)

That is, for any given positive cost value Rl (arbitrarily close to zero), the risk-sensitive
cost Jθ(y) is not greater than Rl, where θ is called the risk-sensitivity parameter and
y − yd is called the output tracking error. When θ > 0, the cost function weights
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heavily the large deviation of y− yd through the exponential operator, which leads to
a risk-averse control design problem. The greater the value of θ, the more conservative
is the controller. Actually, by the value of θ, the risk-sensitive problem can be classified
(see [10] and [31]) as follows: (i) when θ > 0, it is a risk-averse problem; (ii) when
θ < 0, it is a risk-seeking problem; (iii) when θ → 0, the cost function converges to a
standard integral cost, and so it is known as a risk-neutral problem.

In this paper, we will study only the case where θ is positive.
For convenience of expression, we give the following definition.
Definition 3.1. For a given positive risk-sensitivity parameter θ, a controller u

is said to achieve a guaranteed risk-sensitive cost Rl (Rl > 0) if the following inequality
holds for the output of the closed-loop system:

Jθ(y) ≤ Rl.

In addition to the purposes of cost upper bound, we are also interested in achieving
boundedness in probability for the closed-loop system. This notion, together with the
asymptotical stability in the large, was introduced in the classical book [21] and has
now been widely used. For the sake of the self-containedness of this paper, we will
restate these two notions in Appendix A.

The system (3.1) can be rewritten into the following compact form:

dx = f(x) dt + Bg(x)u dt + h(x) dw,(3.3)

where

f(x) =

⎡⎢⎢⎢⎣
x2 + f1(x1)

...
xn + fn−1(x1)

fn(x1)

⎤⎥⎥⎥⎦, g(x) = g(x1),

B =

⎡⎢⎢⎢⎣
0(n−m−1)×1

bm
...
b0

⎤⎥⎥⎥⎦, h(x) =

⎡⎢⎢⎢⎣
h1(x1)
h2(x1)

...
hn(x1)

⎤⎥⎥⎥⎦.
If ρ = 1, then m = n − ρ = n − 1. For this special case, vector B defined above is
simply [bn−1, . . . , b1, b0]

�.
For tracking purposes, the controller to be designed is time-varying in general, and

so is the resulting closed-loop system, even though the original system is not. Thus,
as in [26] and [33], with the long-term average risk-sensitive cost criterion Jθ(y), for
a given desired cost value Rl > 0, a practical risk-sensitive output-feedback tracking
control is designed as {

ξ̇ = α (t, ξ, y) , α ∈ C1,
u = μ (t, ξ, y) , μ ∈ C1,

(3.4)

so that there exists a nonnegative value function V (t, x, ξ), which is C1 in t and C2

in (x, ξ) and radially unbounded with respect to x and ξ, satisfying the following
Hamilton–Jacobi–Bellman (HJB) inequality:

∂V

∂t
+

[
∂V

∂x

∂V

∂ξ

] [
f + Bgμ

α

]
+

θ

4

∂V

∂x
hh�

(
∂V

∂x

)�
(3.5)

+
1

2
Tr

(
∂2V

∂x2
hh�

)
+ (y − yd)

2 ≤ Rl.
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From (3.5), it is easy to see that the essential difference between the stochastic

HJB and deterministic HJB equations is that the former has the Itô term 1
2Tr(∂

2V
∂x2 hh

�).
How to deal with this term is the key to the control design and performance analysis.

4. Output-feedback risk-sensitive control design. We shall design the
output-feedback tracking controller in three steps. First, we introduce an observer
to rebuild the system states. With the observer dynamics in the loop, we introduce
a sequence of coordinate diffeomorphisms transforming the system into a lower tri-
angular structure which is amenable to the application of integrator backstepping
methodology. Then, we describe the control design procedure and present several
lemmas, which will be used for the performance analysis of the closed-loop systems
in the next section.

4.1. Observer design. Since the states of (3.1), except for the state x1 which
can be obtained directly since y = x1, are unknown and need an observer to rebuild,

˙̂x1 = x̂2 + k1(y − x̂1) + f1(y),

...
˙̂xρ−1 = x̂ρ + kρ−1(y − x̂1) + fρ−1(y),

˙̂xρ = x̂ρ+1 + kρ(y − x̂1) + fρ(y) + bmg(y)u,(4.1)

...
˙̂xn−1 = x̂n + kn−1(y − x̂1) + fn−1(y) + b1g(y)u,

˙̂xn = kn(y − x̂1) + fn(y) + b0g(y)u,

where k1, k2, . . . , kn are design constants such that all the roots of polynomial sn +
k1s

n−1 + · · · + kn have negative real parts. The initial condition for observer (4.1) is
set by certain value x̂(t0) = x̂0.

Let x̂ = [x̂1, x̂2, . . . , x̂n]�. Both system output y and observer state vector x̂ are
available for control design. Denote the state estimation error as x̃ = x− x̂. Then we
have

dx̃ =

⎡⎢⎣ −k1

...
In−1

−kn 0 · · · 0

⎤⎥⎦ x̃dt + h(y) dw
�
= Ax̃dt + h(y) dw.(4.2)

Thus, with observer dynamics (4.1) in the loop, we have the following entire system:

dx̃ = Ax̃dt + h(y) dw,

dy = (x̂2 + x̃2) dt + f1(y) dt + h1(y) dw,

˙̂x2 = x̂3 + k2(y − x̂1) + f2(y),

...
˙̂xρ−1 = x̂ρ + kρ−1(y − x̂1) + fρ−1(y),(4.3)

˙̂xρ = x̂ρ+1 + kρ(y − x̂1) + fρ(y) + bmg(y)u,

...
˙̂xn−1 = x̂n + kn−1(y − x̂1) + fn−1(y) + b1g(y)u,

˙̂xn = kn(y − x̂1) + fn(y) + b0g(y)u.
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System (4.3) has three parts, which are associated with the estimation error x̃, system
output y, and observer states x̂2, . . . , x̂ρ, respectively. In particular, when ρ = 1, then
m = n − ρ = n − 1. For this case, the second subequation of (4.3) shall be replaced
by the following equation:

dy = (x̂2 + x̃2) dt + f1(y) dt + bn−1g(y)udt + h1(y) dw.

In the next subsections, with this entire system as starting point, we shall search
for the desired controller.

4.2. Coordinate diffeomorphisms. To prepare for the backstepping design in
the next subsection, we introduce a series of ρ coordinate diffeomorphisms (see [36])
so as to convert the entire system (4.3) into zero-dynamics canonical form, which is
amenable to the application of integrator backstepping methodology.

The idea of such coordinate diffeomorphisms was first introduced in [30] and
significantly modified in Chapter 8 of [24]. Our presentation, including the two cases
of ρ = 1 and ρ > 1, is much more direct and easier to implement.

4.2.1. Case of ρ = 1. When ρ = 1, m = n−ρ = n−1. This means that control
input appears in every subequation of (3.1) and (4.1). In this case, one coordinate
transformation is sufficient to obtain the desired structure.

Let ς0 = [y, x̂2, . . . , x̂n]�. Then, by (4.3), we have the following dynamics for ς0:

dς0 = D0ς0 dt + G0(y, x̃1) dt + [1, 01×(n−1)]
�x̃2 dt + g(y)B0u dt + H0(y) dw,(4.4)

where

D0 =

⎡⎢⎣ 0
...

In−1

0 0 · · · 0

⎤⎥⎦,
G0 = [f1(y), f2(y) + k2x̃1, . . . , fn(y) + knx̃1]

�,

B0 = [bn−1, . . . , b1, b0]
�,

H0 = [(h1(y))
�, 0s×(n−1)]

�.

By coordinate transformation we would like to transform the vector B0 into one
with all elements being zero except the first element, bn−1. Let ς1 = T1ς0, where
T1 is the same as In, except with the first column replaced by [1,−bn−2/bn−1, . . . ,
−b0/bn−1]

�. Then, T−1
1 is also the same as In, except with the first column replaced

by
[
1, bn−2

bn−1
, . . . , b0

bn−1

]�
.

Then we have

dς1 = D1ς1 dt + G1(y, x̃1) dt + [1, L�
2 ]�x̃2 dt + g(y)B1u dt + H1(y) dw,

where D1 = T1D0T
−1
1 is the same as D0, except with the first and second columns

replaced by [d11, . . . , d1,n]� and [1,−bn−2/bn−1, . . . ,−b0/bn−1]
�, respectively:

G1 = T1G0(y, x̃1)
�
=
[
g11(y) + d11x̃1, . . . , g1n(y) + d1nx̃1

]�
,

L2 = [−bn−2/bn−1, . . . ,−b1/bn−1, −b0/bn−1]
�,

B1 = T1B0 = [bn−1, 01×m]
�
,

H1 = T1H0(y)
�
=
[
(ĥ1(y))

�, . . . , (ĥn(y))�
]�

.
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Denote η = ς1 = [η1, . . . , ηn]� and ζ = [η2, η3, . . . , ηn]�. Then, the dynamics of
x̃, ζ, and η1 can be expressed as follows:

dx̃ = Ax̃dt + h(y) dw,

dζ =

⎡⎢⎢⎢⎢⎣
− bn−2

bn−1

...

− b1
bn−1

In−2

− b0
bn−1

0 · · · 0

⎤⎥⎥⎥⎥⎦ ζ dt +

⎡⎢⎢⎢⎣
d12

d13

...
dρn

⎤⎥⎥⎥⎦ y dt

+

⎡⎢⎢⎢⎣
g12(y) + d12x̃1

g13(y) + d13x̃1

...

g1n(y) + d1nx̃1

⎤⎥⎥⎥⎦ dt− 1

bn−1

⎡⎢⎢⎢⎣
bn−2

...
b1
b0

⎤⎥⎥⎥⎦ x̃2dt +

⎡⎢⎢⎢⎢⎣
ĥ2(y)

ĥ3(y)
...

ĥn(y)

⎤⎥⎥⎥⎥⎦ dw(4.5)

�
= Eζ dt + L1x̃1 dt + L2x̃2 dt + G(y) dt + Ψ(y) dw,

dη1 =
[
1, 01×(n−2)

]
ζ dt + (g11(y) + d11y) dt

+ d11x̃1 dt + x̃2 dt + bn−1g(y)u dt + ĥ1(y) dw,

where

y = η1,

L1 = [d12, d13, . . . , d1n]�,

G = [g12(y) + d12y, g13(y) + d13y, . . . , g1n(y) + d1ny]
�.

This system is equivalent to the entire system (4.3) under the transformation
[η1, ζ

�]� = T1[y, x̂2, . . . , x̂n]�. The structure of (4.5) makes the design of an out-
put feedback controller much easier (see the latter design procedure for details).

4.2.2. Case of ρ > 1. Let us now give the coordinate transformations for the
case of ρ > 1. From the ρ transformations below one can see that there exist some
essential differences between this case and the case of ρ = 1.

Let g01(y) = f1(y), d0i = ki, and g0i(y) = fi(y) (i = 2, . . . , n). Then we have the
following dynamics for ς0 = [y, x̂2, . . . , x̂n]�:

dς0 = D0ς0 dt + G0(y, x̃1) dt + [1, 01×(n−1)]
�x̃2 dt + g(y)B0u dt + H0(y) dw,

where matrix D0 and function H0 are the same as those of (4.4), and

G0 = [f1(y), f2(y) + k2x̃1, . . . , fn(y) + knx̃1]
�

�
= [g01(y) + d01x̃1, g02(y) + d02x̃1, . . . , g0n(y) + d0nx̃1]

�

�
= [g01(y, x̃1), g02(y, x̃1), . . . , g0n(y, x̃1)]

�
,

B0 = [01×(ρ−1), bm, bm−1, . . . , b0]
�.

By the first transformation, we would like to transform the matrix B0 into one
with all elements being zero except the ρth element, bm. Let ς1 = T1ς0, where T1 is the

same as In, except with the ρth column replaced by
[
01×(ρ−1), 1,− bm−1

bm
, . . . ,− b0

bm

]�
.
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Then T−1
1 is also the same as In, except with the ρth column replaced by

[
01×(ρ−1), 1,

− bm−1

bm
, . . . , − b0

bm

]�
.

Then we have

dς1 = D1ς1 dt + G1(y, x̃1) dt +
[
1,01×(n−1)

]�
x̃2 dt + g(y)B1u dt + H1(y) dw,

where D1 = T1D0T
−1
1 is the same as D0 except with the ρth and (ρ + 1)st columns

replaced by [01×(ρ−2), 1, d11, . . . , d1,m+1]
� and [01×(ρ−1), 1,−bm−1/bm, . . . ,−b0/bm]�,

respectively,

G1 = T1G0(y, x̃1)

�
= [g11(y) + d11x̃1, . . . , g1n(y) + d1nx̃1]

�

�
= [g11(y, x̃1), . . . , g1n(y, x̃1)]

�
,

B1 = T1B0 = [01×(ρ−1), bm, 01×m]�,

H1 = T1H0(y) = H0(y).

By the ith (i = 2, . . . , ρ − 1) transformation, we would like to transform the
(ρ − i + 2)nd column of the matrix Di−1 into the (ρ − i + 1)st unit vector. Let
ςi = Tiςi−1, where Ti is the same as In except with the (ρ− i + 1)st column replaced
by [01×(ρ−i), 1,−di−1,1, . . . ,−di−1,m+i−1]

�. Then, T−1
i is also the same as In except

with the (ρ− i + 1)st column replaced by [01×(ρ−i), 1, di−1,1, . . . , di−1,m+i−1]
�.

This leads to

dςi = Diςi dt + Gi(y, x̃1) dt + [1,01×(n−1)]
�x̃2 dt + g(y)Biu dt + Hi(y) dw,

where Di = TiDi−1T
−1
i is the same as D0 except with the (ρ− i+ 1)st and (ρ+ 1)st

columns replaced by [01×(ρ−i−1), 1, di1, . . . , di,i+m]� and [01×(ρ−1), 1,−bm−1/bm, . . . ,

−b0/bm]�, respectively,

Gi = TiGi−1(y, x̃1)

�
= [gi1(y) + di1x̃1, . . . , gin(y) + dinx̃1]

�

�
= [gi1(y, x̃1), . . . , gin(y, x̃1)]

�
,

Bi = TiBi−1 = B1 = [01×(ρ−1), bm, 01×m]�,

Hi = TiHi−1(y) = H0(y).

Finally, by the last transformation, we would like to transform the second column
of the matrix Dρ−1 into the first unit vector. Let ςρ = Tρςρ−1, where Tρ is the same as
In except with the first column replaced by [1,−dρ−1,1, . . . ,−dρ−1,n−1]

�. Then, T−1
ρ is

also the same as In except with the first column replaced by [1, dρ−1,1, . . . , dρ−1,n−1]
�.

This leads to

dςρ = Dρςρ dt + Gρ(y, x̃1) dt + [1,−dρ−1,1, . . . ,−dρ−1,n−1]
�
x̃2 dt

+ g(y)Bρu dt + Hρ(y) dw,
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where Dρ = TρDρ−1T
−1
ρ is the same as D0 except with the first and (ρ+1)st column

replaced by [dρ1, . . . , dρn]� and [01×(ρ−1), 1,−bm−1/bm, . . . ,−b0/bm]�, respectively,

Gρ = TρGρ−1(y, x̃1)

�
=
[
gρ1(y) + dρ1x̃1, . . . , gρn(y) + dρnx̃1

]�
�
= [gρ1(y, x̃1), . . . , gρn(y, x̃1)]

�
,

Bρ = TρBρ−1 = B1,

Hρ = TρHρ−1 = TρH0
�
=
[
(ĥ1(y))

�, . . . , (ĥn(y))�
]�

.

Denote η = ςρ = [η1, . . . , ηn]� and ζ = [ηρ+1, . . . , ηn]�. Then η1 = y, and the
dynamics of estimation error, the zero-dynamics of ζ, and the lower triangular form
for the dynamics of η1, . . . , ηρ can be expressed as follows:

dx̃ = Ax̃dt + h(y) dw,

dζ =

⎡⎢⎢⎢⎢⎢⎣
− bm−1

bm
...

− b1
bm

Im−1

− b0
bm

0 · · · 0

⎤⎥⎥⎥⎥⎥⎦ ζ dt +

⎡⎢⎣ dρ,ρ+1

...
dρn

⎤⎥⎦ y dt

+

⎡⎢⎣ −dρ−1,ρ

...
−dρ−1,n−1

⎤⎥⎦ x̃2 dt +

⎡⎢⎣ gρ,ρ+1(y, x̃1)
...

gρn(y, x̃1)

⎤⎥⎦ dt +

⎡⎢⎣ ĥρ+1(y)
...

ĥn(y)

⎤⎥⎦ dw(4.6)

�
= Eζ dt + L1x̃1 dt + L2x̃2 dt + G(y) dt + Ψ(y) dw,

dη1 = dρ1y dt + (η2 + x̃2) dt + gρ1(y, x̃1) dt + ĥ1(y) dw,

dη2 = [dρ2y + η3 + gρ2(y, x̃1) − dρ−1,1x̃2] dt + ĥ2(y) dw,

...

dηρ−1 = [dρ,ρ−1y + ηρ + gρ,ρ−1(y, x̃1) − dρ−1,ρ−2x̃2] dt + ĥρ−1(y) dw,

dηρ =
[
1, 01×(m−1)

]
ζ dt + dρρy dt + gρρ(y, x̃1) dt

+ bmg(y)u dt− dρ−1,ρ−1x̃2 dt + ĥρ(y) dw,

where

y = η1,

L1 = [dρ,ρ+1, . . . , dρn]�,

G = [gρ,ρ+1(y) + dρ,ρ+1y, . . . , gρ,n(y) + dρny]
�.

This system is equivalent to the entire system (4.3) under the transformation [η1, . . . ,
ηρ, ζ

�]� = Tρ · · ·T1[y, x̂2, . . . , x̂n]�. The structure of (4.6) allows the design of an
output feedback controller by using integrator backstepping methodology.

4.3. Control design procedure. We now start to design the desired controller
with the estimation error x̃ and the zero-dynamics ζ (given by (4.5) for the case of
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ρ = 1 and (4.6) for the case of ρ > 1). To do so, let χ = [ζ�, x̃�]� ∈ R
n+m. Then

for both ρ = 1 and ρ > 1 we have

dχ =

[
E L

0n×m A

]
χdt +

[
G(y)
0n×1

]
dt +

[
Ψ(y)
h(y)

]
dw(4.7)

�
= Wχdt + F (y) dt + Φ(y) dw,

where L = [L1, L2, 0m×(n−2)], and F and Φ are C∞.
For the objective of a tight controller, the dynamics χ would be partitioned as

χ = [χ�
a , χ�

b ]�, where χa = [ζ�, x̃1]
� ∈ R

m+1 is available for feedback design, while
χb = [x̃2, . . . , x̃n]� ∈ R

n−1 is not. Furthermore, χa and χb satisfy the following
stochastic differential equations, respectively:

dχa =

[
E L1

01×m −k1

]
χa dt +

[
L2 0m×(n−2)

1 01×(n−2)

]
χb dt(4.8a)

+

[
G(y)

0

]
dt +

[
Ψ(y)

h1(y)

]
dw

�
= Waχa dt + Laχb dt + Fa(y) dt + Φa(y) dw,

dχb =

⎡⎢⎣ 0
...

In−2

0 0 · · · 0

⎤⎥⎦χb dt +

⎡⎢⎣ 0 · · · 0 −k2

...
. . .

...
...

0 · · · 0 −kn

⎤⎥⎦χa dt(4.8b)

+

⎡⎢⎣ h2(y)
...

hn(y)

⎤⎥⎦ dw

�
= Wbχb dt + Lbχa dt + Φb(y) dw,

where Fa, Φa, and Φb are C∞.
Remark 4.1. From subsection 4.2 we know that E, G, L, and Ψ in (4.7)–(4.8)

are differently defined with respect to ρ = 1 and ρ > 1, respectively, and so are W ,
Wa, Wb, F , Fa, Fb, La, Lb, and Φa. Thus, for the sake of the unambiguousness, these
two cases will be separately handled below.

We are now in a position to develop a recursive construction procedure for the
desired risk-sensitive controller.

4.3.1. Initial assignment. First, we present the initial assignment for the entire
design procedure.

By assumption A2, we know that matrix E is Hurwitz. This, together with the
Hurwitz property of matrix A, implies that W is also Hurwitz. Therefore, there exists
a symmetric and positive definite matrix P such that

W�P + PW = −In+m.(4.9)

We introduce a value function (or Lyapunov function) for the χ system:

V0(χ) = φ(ξ(χ)) = δ(c + ξ(χ))γ − δcγ , ξ = χ�Pχ,(4.10)
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where 0 < δ ≤ 1, c > 0, 1
2 < γ < 1. Design constants c and δ will be specified

later. Constant γ is pregiven and called the characteristic parameter of value function
V0. Clearly, V0(χ) is positive definite and radially unbounded, and it vanishes at the
origin χ = 0(n+m)×1.

Remark 4.2. Risk-sensitive control is much different from stochastic stabilization,
and thus the methods developed by [5], [6], and [35] are not suitable for our control
objective. Therefore, here we introduce a subquadratic function V0 characterized by
γ (see (4.10)), by which a method suitable for output-feedback risk-sensitive control
design is developed.

Let z1 = y − yd be the tracking error. Then, by assumptions A1 and A3, there
exist a vector-valued smooth function F (yd, z1) and a matrix-valued smooth function
Φ(yd, z1) such that

F (y) = F (z1 + yd) = F (yd) + z1F (yd, z1),(4.11a)

Φ(y) = Φ(z1 + yd) = Φ(yd) + z1Φ(yd, z1).(4.11b)

Lemma 4.1. There exist a smooth vector-valued function σ0(χ, y), a smooth
function N0(yd, χa, z1), and smooth r0(yd), C0(yd) such that

dV0 ≤ σ0 dw − θ

4
σ0σ

�
0 dt− r0 ‖χ‖2

(c + χ�Pχ)1−γ
dt + N0z1 dt + C0 dt.(4.12)

Proof. By (4.7) and the Itô formula we have

dV0 = −∂φ

∂ξ
‖χ‖2 dt + σ0(y, χ) dw − θ

4
σ0σ

�
0 dt +

θ

4
σ0σ

�
0 dt(4.13)

+ 2
∂φ

∂ξ
χ�PF (y) dt +

1

2
Tr

(
∂2V0

∂χ2
Φ(y)(Φ(y))�

)
dt,

where σ0 = ∂V0

∂χ Φ is a row vector-valued function. In the above equality, we have used

the technique of subtracting from and adding term θ
4σ0σ

�
0 dt to its right-hand side.

Notice that ∂V0

∂χ = ∂φ
∂ξ · ∂ξ

∂χ and ∂φ
∂ξ = δγ

(c+ξ)1−γ . Then we have

σ0 =
∂φ

∂ξ
· ∂ξ
∂χ

Φ =
2δγ

(c + ξ)1−γ
χ�PΦ(y).(4.14)

Let ξa = χ�
a (P1 − P2P

−1
3 P�

2 )χa, where P =
[

P1 P2

P�
2 P3

]
, P1 ∈ R

(m+1)×(m+1),

P2 ∈ R
(m+1)×(n−1), P3 ∈ R

(n−1)×(n−1). Clearly, since P is positive definite, so is
P1 −P2P

−1
3 P�

2 . Then ξa is available for feedback design and satisfies 0 ≤ ξa ≤ ξ. For
the first term of the second line on the right-hand side of (4.13), by using (4.11a), we
have

2
∂φ

∂ξ
χ�PF (y) = 2

∂φ

∂ξ
χ�P (F (yd) + F (yd, z1)z1)(4.15)

=
2δγχ�PF (yd)

(c + ξ)1−γ
+

2δγχ�PF (yd, z1)

(c + ξ)1−γ
z1

≤ δγε2
01‖χ‖2

(c + ξ)1−γ
+

δγ‖PF (yd)‖2

ε2
01(c + ξ)1−γ

+
δγ‖PF (yd, z1)‖2

ε2
02(c + ξ)1−γ

z2
1 +

δγε2
02‖χ‖2

(c + ξ)1−γ

≤ δγ(ε2
01 + ε2

02)‖χ‖2

(c + χ�Pχ)1−γ
+

δγ‖PF (yd)‖2

ε2
01c

1−γ
+

δγ‖PF (yd, z1)‖2

ε2
02(c + ξa)1−γ

z2
1 .
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Here and hereafter, ε01, ε02, ε03, and ε04 are positive design constants to be deter-
mined later.

For the term θ
4σ0σ

�
0 dt on the right-hand side of (4.13), by (4.11b) we have

θ

4
σ0σ

�
0 =

θδ2γ2χ�PΦ(y)(Φ(y))�Pχ

(c + χ�Pχ)2−2γ

=
θδ2γ2χ�P

(
Φ(yd) + z1Φ(yd, z1)

)
·
(
Φ(yd) + z1Φ(yd, z1)

)�
Pχ

(c + χ�Pχ)2−2γ

=
θδ2γ2χ�PΦ(yd)(Φ(yd))

�Pχ

(c + χ�Pχ)2−2γ

+
θδ2γ2

[
χ�
a , χ

�
b

]
P
(
2Φ(yd) + z1Φ(yd, z1)

)
(Φ(yd, z1))

�P [χ�
a , χ

�
b ]�

(c + χ�Pχ)2−2γ
z1(4.16)

=
θδ2γ2χ�PΦ(yd)(Φ(yd))

�Pχ

(c + χ�Pχ)2−2γ

+
θδ2γ2

[
χ�
a , 01×(n−1)

]
PΦ(yd, z1)(Φ(yd, z1))

�P
[
χ�
a , 01×(n−1)

]�
(c + χ�Pχ)2−2γ

z2
1

+
θδ2γ2χ�P

(
2Φ(yd) + z1Φ(yd, z1)

)
(Φ(yd, z1))

�P
[
01×(m+1), χ

�
b

]�
(c + χ�Pχ)2−2γ

z1

+
2θδ2γ2χ�PΦ(yd)(Φ(yd, z1))

�P
[
χ�
a , 01×(n−1)

]�
(c + χ�Pχ)2−2γ

z1

+
θδ2γ2

[
χ�
a , 01×(n−1)

]
PΦ(yd, z1)(Φ(yd, z1))

�P [01×(m+1), χ
�
b ]�

(c + χ�Pχ)2−2γ
z2
1

≤ θδ2γ2‖PΦ(yd)‖2
F

c1−γ

‖χ‖2

(c + χ�Pχ)1−γ

+
θδ2γ2

[
χ�
a , 01×(n−1)

]
PΦ(yd, z1)(Φ(yd, z1))

�P
[
χ�
a , 01×(n−1)

]�
(c + ξa)2−2γ

z2
1

+
θδ2γ2‖P‖2

∥∥(2Φ(yd) + z1Φ(yd, z1)
)
(Φ(yd, z1))

�∥∥p
F

pεp03(c + ξa)p−γ(p+1)
zp1

+
(p− 1)θδ2γ2‖P‖2ε

p
p−1

03

pλ
1

p−1

min (P )

‖χ‖2

(c + χ�Pχ)1−γ

+
θδ2γ2‖P‖4

ε2
04(c + ξa)3−3γ

‖χa‖2

(
‖Φ(yd)‖2

F +
z2
1

2
‖Φ(yd, z1)‖2

F

)
‖Φ(yd, z1)‖2

F z
2
1

+
3θδ2γ2ε2

04‖χ‖2

2(c + χ�Pχ)1−γ
,

where p is a positive even integer (that is, it takes values in set {2, 4, 6, 8, . . .}) and
satisfies the inequality p ≥ γ

1−γ (or γ ≤ p
p+1 ). Let q = p

p−1 . Then, p and q satisfy
1
p + 1

q = 1. In the inequality (4.16), we have used the Young’s inequality

x�y ≤ εpW p(x, y)

p
‖x‖p +

1

qεqW q(x, y)
‖y‖q ∀x, y ∈ R

n, ε > 0, W (x, y) > 0,



898 YUN-GANG LIU AND JI-FENG ZHANG

to get

θδ2γ2χ�P
(
2Φ(yd) + z1Φ(yd, z1)

)
(Φ(yd, z1))

�P [01×(m+1), χ
�
b ]�

(c + χ�Pχ)2−2γ
z1

≤
θδ2γ2‖P‖2W p(χ)

∥∥(2Φ(yd) + z1Φ(yd, z1)
)
(Φ(yd, z1))

�∥∥p
pεp03(c + ξ)2p(1−γ)

zp1

+
θδ2γ2‖P‖2εq03‖χ‖2q

qW q(χ)

≤
θδ2γ2‖P‖2

∥∥(2Φ(yd) + z1Φ(yd, z1)
)
(Φ(yd, z1))

�∥∥p
F

pεp03(c + ξa)p−γ(p+1)
zp1

+
(p− 1)θδ2γ2‖P‖2ε

p
p−1

03

pλ
1

p−1

min (P )

‖χ‖2

(c + χ�Pχ)1−γ
,

with W (χ) = (c + ξ)1+
γ
p−γ , and

2θδ2γ2χ�PΦ(yd)(Φ(yd, z1))
�P
[
χ�
a , 01×(n−1)

]�
(c + χ�Pχ)2−2γ

z1

≤
θδ2γ2

(
1

ε204(W (χ))2

∥∥PΦ(yd)(Φ(yd, z1))
�P [χ�

a ,01×(n−1)]
�∥∥2

z2
1 + ε2

04(W (χ))2‖χ‖2

)
(c + χ�Pχ)2−2γ

≤ θδ2γ2‖P‖4

ε2
04(c + ξa)3−3γ

‖χa‖2
∥∥Φ(yd)

∥∥2

F

∥∥Φ(yd, z1)
∥∥2

F
z2
1 +

θδ2γ2ε2
04‖χ‖2

(c + χ�Pχ)1−γ
,

θδ2γ2[χ�
a , 01×(n−1)]PΦ(yd, z1)(Φ(yd, z1))

�P [01×(m+1), χ
�
b ]�

(c + χ�Pχ)2−2γ
z2
1

≤
θδ2γ2

(
1

ε204W
2(χ)

∥∥[χ�
a ,01×(n−1)]PΦ(yd, z1)(Φ(yd, z1))

�P
∥∥2

z4
1 + ε2

04W
2(χ)‖χb‖2

)
2(c + χ�Pχ)2−2γ

≤ θδ2γ2‖P‖4

2ε2
04(c + ξa)3−3γ

‖χa‖2
∥∥Φ(yd, z1)

∥∥4

F
z4
1 +

θδ2γ2ε2
04‖χ‖2

2(c + χ�Pχ)1−γ
,

with W (χ) = (c + ξ)
1
2−

1
2γ .

For the last term on the right-hand side of (4.13), by (4.11b), we have

1

2
Tr

(
∂2V0

∂χ2
ΦΦ�

)
(4.17)

= Tr

((
δγP

(c + χ�Pχ)1−γ
− 2δγ(1 − γ)Pχχ�P

(c + χ�Pχ)2−γ

)
ΦΦ�

)

≤ 2δγ

c1−γ
Tr
(
(Φ(yd))

�PΦ(yd)
)

+
2δγTr

(
(Φ(yd, z1))

�PΦ(yd, z1)
)

(c + ξa)1−γ
z2
1 .
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Substituting (4.15), (4.16), and (4.17) into (4.13), we get (4.12) with

r0 = δγ(1 − ε2
01 − ε2

02) − θδ2γ2

⎛⎝3

2
ε2
04 +

‖PΦ(yd)‖2
F

c1−γ
+

(p− 1)ε
p

p−1

03 ‖P‖2

pλ
1

p−1

min (P )

⎞⎠ ,(4.18)

N0 =
δγ
∥∥PF (yd, z1)

∥∥2

ε2
02(c + ξa)1−γ

z1

+
θδ2γ2

[
χ�
a , 01×(n−1)

]
PΦ(yd, z1)(Φ(yd, z1))

�P
[
χ�
a , 01×(n−1)

]�
(c + ξa)2−2γ

z1

+
θδ2γ2‖P‖2

∥∥(2Φ(yd) + z1Φ(yd, z1)
)
(Φ(yd, z1))

�∥∥p
F

pεp03(c + ξa)p−γ(p+1)
zp−1
1

+
θδ2γ2‖P‖4

ε2
04(c + ξa)3−3γ

‖χa‖2

(
‖Φ(yd)‖2

F +
z2
1

2
‖Φ(yd, z1)‖2

F

)
‖Φ(yd, z1)‖2

F z1

+
2δγTr

(
(Φ(yd, z1))

�PΦ(yd, z1)
)

(c + ξa)1−γ
z1,

C0 =
δγ

c1−γ

(
‖PF (yd)‖2

ε2
01

+ 2Tr
(
PΦ(yd)(Φ(yd))

�)).(4.19)

The control design procedure will be presented for the two cases of ρ = 1 and
ρ > 1 separately in subsections 4.3.2 and 4.3.3 below.

4.3.2. Control design for the case of ρ = 1. Let us now present the control
design for the system (3.1) with ρ = 1. From (4.5) and (4.7) we obtain the following
overall systems:

dχ = Wχdt + F (y) dt + Φ(y) dw,(4.20a)

dη1 = bn−1g(y)u dt + d1χb dt + g1(y, χa) dt + ĥ1(y) dw,(4.20b)

where

y = η1,

d1 = [1, 01×(n−2)],

g1 = g11(y) + d11[01×(n−1), 1]χa + d11y +
[
1, 01×(n−1)

]
χa.

It is easy to check that g1 and ĥ1 are C∞.

Let α1 = bn−1g(y)u, S1 = d1, F (y
[1]
d , χ1, η1) = g1(y, χa)−ẏd, and Ψ1(y) = ĥ1(y).

Then, by (4.20), we have the dynamics of tracking error z1 = η1 − yd:

dz1 = (α1 + S1χb + F1) dt + Ψ1 dw.(4.21)

Let V1 = V0 + Ξ1(yd)z
2
1 , where V0 is defined by (4.10) and Ξ1 is to be specified later.
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Then, by (4.12) and (4.21), we have

(4.22)

dV1 = dV0 + 2z1Ξ1(α1 + F1 + S1χb) dt +
∂Ξ1

∂t
z2
1 dt + Ξ1Ψ1Ψ

�
1 dt + 2Ξ1Ψ1z1 dw

≤ σ1(yd, χ, z1) dw − θ

4
σ1σ

�
1 dt− β1Ξ1z

2
1 dt + β1Ξ1z

2
1 dt− r0(yd)

‖χ‖2

(c + ξ)1−γ
dt

+ 2z1Ξ1(yd)(α1 + F1) dt +
∂Ξ1

∂t
z2
1 dt + N0(yd, χa, z1)z1 dt

+
θ

4
σ1σ

�
1 dt− θ

4
σ0σ

�
0 dt + M1χbz1 dt + Ξ1Ψ1Ψ

�
1 dt + C0(yd) dt,

where M1 = 2Ξ1S1, σ1 = σ0 + 2Ξ1Ψ1z1. In the above inequality, we have used the
technique of subtracting from and adding to its right-hand side the terms θ

4σ1σ
�
1 dt

and β1Ξ1z
2
1 dt. Here and hereafter, β1, β1, . . . , βρ are positive design constants to be

determined.

Since σ0 = ∂V0

∂χ Φ(y) is unavailable for feedback design, so is the term θ
4σ1σ

�
1 dt−

θ
4σ0σ

�
0 dt on the right-hand side of (4.22). Therefore, we give the following estimate:

(4.23)

θ

4
(σ1σ

�
1 − σ0σ

�
0 ) = θΞ1σ0Ψ

�
1 z1 + θΞ2

1Ψ1Ψ
�
1 z

2
1

= θΞ2
1Ψ1Ψ

�
1 z

2
1 + θε2

11

∥∥∥∥∥
(
∂V0

∂χ

)�
∥∥∥∥∥

2

+
θ

4ε2
11

Ξ2
1Ψ1Φ

�ΦΨ�
1 z

2
1 − θε2

11

∥∥∥∥∥
(
∂V0

∂χ

)�
− Ξ1

2ε2
11

ΦΨ�
1 z1

∥∥∥∥∥
2

≤ −θε2
11

∥∥∥∥∥
(
∂V0

∂χ

)�
− Ξ1

2ε2
11

ΦΨ�
1 z1

∥∥∥∥∥
2

+
4θδ2γ2ε2

11‖P‖2

c1−γ

· ‖χ‖2

(c + χ�Pχ)1−γ
+ θΞ2

1

(
Ψ1Ψ

�
1 +

1

4ε2
11

Ψ1Φ
�ΦΨ�

1

)
z2
1 ,

where (and whereafter) ε11 and ε1 are positive design constants to be specified.

Define

Δ11(yd, χ, z1) = θε2
11

∥∥∥∥∥
(
∂V0

∂χ

)�
− Ξ1

2ε2
11

ΦΨ�
1 z1

∥∥∥∥∥
2

,(4.24a)

Δ12(yd, χ, z1) =
ε

p1
p1−1

1 (p1 − 1)

p1
‖χb‖

p1
p1−1 +

‖M�
1 ‖p1

p1ε
p1

1

zp1

1 −M1χbz1.(4.24b)

Clearly, Δ11 ≥ 0. Thus also, by Young’s inequality, it is easy to see that Δ12 ≥ 0.

If p1 takes values in set {4, 6, 8, 10, . . .} and satisfies p1 ≥ 2γ
2γ−1 , then we can give

an upper bound for “M1χbz1”:
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M1χbz1 = −Δ12 +
ε

p1
p1−1

1 (p1 − 1)

p1
‖χb‖

p1
p1−1 +

‖M�
1 ‖p1

p1ε
p1

1

zp1

1(4.25)

≤ −Δ12 +
ε

p1
p1−1

1 (p1 − 1)

p1
λ1−γ

max(P )

(
Mγ(c) +

‖χ‖2

(c + χ�Pχ)1−γ

)

+
ε

p1
p1−1

1 (p1 − 1)

p1
K
(

p1

p1 − 1
, 2γ

)
+

‖M�
1 ‖p1

p1ε
p1

1

zp1

1 ,

where K(a1, a2) is defined in Lemma B.3.
Since there exist smooth functions Ψ1(yd, z1) and Ψ11(yd, z1) satisfying

Ψ1 = Ψ1(yd, z1) = Ψ1(yd) + z1Ψ11(yd, z1),

for the fourth term of the last line on the right-hand side of (4.22) we have

Ξ1Ψ1Ψ
�
1 = Ξ1‖(Ψ1(yd) + z1Ψ11(yd, z1))

�‖2(4.26)

≤ 2Ξ1‖(Ψ1(yd))
�‖2 + 2Ξ1‖(Ψ11(yd, z1))

�‖2z2
1 .

Choose

Ξ1 =
κ1

1 + ‖(Ψ1(yd))�‖2
,(4.27)

where (and whereafter) κ1, κ2, . . . , κρ are positive design constants to be determined.
Thus, by substituting (4.23), (4.25), (4.26), and (4.27) into (4.22), and via some

straightforward calculations, we get

dV1 ≤ −z2
1 dt + σ1 dw − θ

4
σ1σ

�
1 dt− r1(yd)‖χ‖2

(c + χ�Pχ)1−γ
dt(4.28)

−Ξ1β1z
2
1 dt + 2z1Ξ1 (α1 − α1(y

[1]
d , χa, η1)) dt

−Δ1(yd, χ, z1) dt + 2Ξ1z1z2 dt + C1(y
[1]
d ) dt,

where

r1 = r0(yd) −
4θδ2γ2ε2

11‖P‖2

c1−γ
− ε

p1
p1−1

1 (p1 − 1)

p1
λ1−γ

max(P ),(4.29)

N1 = F1 +
β1z1

2
+

z1

2Ξ1

∂Ξ1

∂yd
ẏd +

‖M�
1 ‖p1

2p1Ξ1ε
p1

1

zp1−1
1(4.30)

+ θΞ1

(
Ψ1Ψ

�
1

2
+

Ψ1Φ
�ΦΨ�

1

8ε2
11

)
z1 + ‖(Ψ11(yd, z1))

�‖2z1,

α1 =

{
−N1 −

z1

2Ξ1
− N0

2Ξ1

}∣∣∣∣
z1=η1−yd

,(4.31)

Δ1 = Δ11 + Δ12, with Δ11 and Δ12 being defined by (4.24),

C1 = C0(yd) +
ε

p1
p1−1

1 (p1 − 1)

p1
λ1−γ

max(P )Mγ(c) + 2Ξ1‖(Ψ1(yd))
�‖2(4.32)

+
ε

p1
p1−1

1 (p1 − 1)

p1
K
(

p1

p1 − 1
, 2γ

)
.
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It is easy to check that C1, r1, and α1 are C∞.

Thus, we can choose the function α1(y
[1]
d , χa, η1) in the following form:

α1 = α1(y
[1]
d , χa, η1).(4.33)

From this and the definition of α1, i.e., α1 = bn−1g(y)u, we immediately obtain the
following risk-sensitive controller:

u =
α1

bn−1g(y)
=

1

bn−1g(y)
α1(y

[1]
d , χa, η1).(4.34)

Then, by (4.28) and (4.33), we have

dV1 ≤ −z2
1 dt + σ1 dw − θ

4
σ1σ

�
1 dt− r1(yd)‖χ‖2

(c + χ�Pχ)1−γ
dt(4.35)

− Ξ1β1z
2
1 dt− Δ1(yd, χ, z1) dt + C1(y

[1]
d ) dt.

4.3.3. Control design for the case of ρ > 1. This subsection investigates
the control design for the system (3.1) with ρ > 1. From the procedure addressed
below, we know that the control design for this case is more complicated than that
for the case of ρ = 1 given in subsection 4.3.2.

First, from (4.6) and (4.7) we obtain the following overall systems amenable for
integrator backstepping design:

dχ = Wχdt + F (y) dt + Φ(y) dw,

dη1 = η2 dt + d1χb dt + g1(y, χa) dt + ĥ1(y) dw,

dη2 = η3 dt + d2χb dt + g2(y, χa) dt + ĥ2(y) dw,(4.36)

...

dηρ−1 = ηρ dt + dρ−1χb dt + gρ−1(y, χa) dt + ĥρ−1(y) dw,

dηρ = bmg(y)u dt + dρχb dt + gρ(y, χa) dt + ĥρ(y) dw,

where

y = η1,

d1 = [1,01×(n−2)], di = [−dρ−1,i−1,01×(n−2)], i = 2, . . . , ρ,

gi = gρi (y, [01×m, 1]χa) + dρiy, i = 1, . . . , ρ− 1,

gρ = gρρ (y, [01×m, 1]χa) + dρρy + [1,01×m]χa.

It is easy to check that gi, ĥi, i = 1, . . . , ρ, are C∞.
Below is the backstepping design procedure, which involves ρ steps in all.

Step 1. Define variable z2 = η2 − α1(y
[1]
d , χa, η1) and value function V1 = V0 +

Ξ1(yd)z
2
1 for this step, where α1 is a smooth function known as a virtual control law

and Ξ1 is a positive and smooth function. Both α1 and Ξ1 will be specified in this
step.

From (4.36) it follows that

dz1 = (z2 + α1 + F1(y
[1]
d , χa, η1)) dt + S1χb dt + Ψ1(η1) dw,(4.37)

where F1 = g1(y, χa) − ẏd, S1 = d1, Ψ1 = ĥ1(y).
Clearly, (4.37) has the same structure as that of (4.21). Then, as in the case of

ρ = 1, the virtual controller α1 can be given by (4.33), which is such that
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dV1 ≤ −z2
1 dt + σ1(yd, χ, z1) dw − θ

4
σ1σ

�
1 dt− r1(yd)‖χ‖2

(c + χ�Pχ)1−γ
dt(4.38)

−Ξ1β1z
2
1 dt− Δ1(yd, χ, z1) dt + 2Ξ1z1z2 dt + C1(y

[1]
d ) dt,

where σ1, r1, Ξ1, Δ1, C1 are defined as in the case of ρ = 1.
This completes Step 1.
Step i (i = 2, . . . , ρ− 1). Suppose that from step 1 through to step i− 1 we have

obtained zj = ηj − αj−1(y
[j−1]
d , χa, η[j−1]), j = 1, . . . , i, and value function

Vi−1 = V0 +

i−1∑
j=1

Ξj(y
[j−1]
d , χa, z[j−1])z

2
j

satisfying

dVi−1 ≤ −z2
1 dt + σi−1(y

[i−2]
d , χ, z[i−1]) dw − θ

4
σi−1σ

�
i−1 dt(4.39)

− ri−1(yd)
‖χ‖2

(c + χ�Pχ)1−γ
dt− Δi−1(y

[i−2]
d , χ, z[i−1]) dt

−
i−1∑
j=1

Ξj

(
βj − 2

i−1∑
m=j+1

(m− 1)κm

)
z2
j dt

+ 2Ξi−1zi−1zi dt + Ci−1(y
[i−1]
d , χa, z[i−1]) dt,

where

dz1 = (z2 + α1 + F1(y
[1]
d , χa, η1))dt + S1χbdt + Ψ1(η1)dw,

dzj = (zj+1 + αj + Fj(y
[j]
d , χa, η[j]))dt + Sj(y

[j−1]
d , χa, η[j−1])χbdt

+ Ψj(y
[j−1]
d , χa, η[j−1])dw, j = 2, 3, . . . , i− 1,

σi−1 = σ0 +

i−1∑
j=1

(
2ΞjzjΨj + z2

j

∂Ξj

∂χa
Φa + z2

j

j−1∑
k=1

∂Ξj

∂zk
Ψk

)
,

ri−1 = r1(yd),(4.40)

Ci−1 = C1(y
[1]
d ) +

i−1∑
j=2

2Ξj‖(Ψj(y
[j−1]
d , χa, 0(j−1)×1))

�‖2,(4.41)

and Δi−1 = Δi−1, 1(y
[i−2]
d , χ, z[i−1]) + Δi−1, 2(y

[i−2]
d , χb, z[i−1]). Here Δi−1, 1 and

Δi−1, 2 are given as follows:

Γj(y
[j−1]
d , χa, z[j]) = Ψj +

zj
2Ξj

∂Ξj

∂χa
Φa +

zj
2Ξj

j−1∑
k=1

∂Ξj

∂zk
Ψk, j = 1, . . . , i− 1,

Δi−1, 1 = θε2
11

∥∥∥∥∥∥
(
∂V0

∂χ

)�
− 1

2ε2
11

i−1∑
j=1

ΞjΦΓ�
j zj

∥∥∥∥∥∥
2

,

Mk(y
[k−1]
d , χa, z[k]) = 2ΞkSk + zk

k−1∑
j=1

∂Ξk

∂zj
Sj + zk

∂Ξk

∂χa
La, 1 ≤ k ≤ i− 1,

Δi−1, 2 =
ε

p1
p1−1

1 (p1 − 1)

p1
‖χb‖

p1
p1−1 +

∥∥∥∑i−1
k=1 M

�
k zk

∥∥∥p1

p1ε
p1

1

−
(

i−1∑
k=1

Mkzk

)
χb.(4.42)
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It should be noted that Ξi, Fj , Sj , Γj , Ψj , Mj , j = 1, . . . , i − 1, αj , αj , i =
0, 1, . . . , i− 1, σi−1, ri−1, Ci−1 are C∞. By Young’s inequality, it is easy to see that
Δi−1, 2 ≥ 0.

Let �i−1(y
[i−2]
d , χa, z[i−2], zi−1) = 1

p1ε
p1
1

‖
∑i−2

k=1 M
�
k zk + M�

i−1zi−1‖p1 . Then

Υi−1(y
[i−2]
d , χa, z[i−1])

�
=

1

p1ε
p1

1

(∥∥∥∥∥
i−2∑
k=1

M�
k zk + M�

i−1zi−1

∥∥∥∥∥
p1

−
∥∥∥∥∥
i−2∑
k=1

M�
k zk

∥∥∥∥∥
p1)

= �i−1(y
[i−2]
d , χa, z[i−2], zi−1) − �i−1(y

[i−2]
d , χa, z[i−2], 0).

Thus, by using the identity (see [25])

f(X) − f(0) =

(∫ 1

0

∂f(s)

∂s

∣∣∣∣
s=βX

dβ

)
X,

we have

Υi−1 = zi−1Υi−1(y
[i−2]
d , χa, z[i−1]),(4.43)

where

Υi−1 =

∫ 1

0

∂�i−1(·, s)
∂s

∣∣∣∣
s=αzi−1

dα.

Let zi+1 = ηi+1 − αi(y
[i]
d , χa, η[i]), where αi is a C∞ function to be defined later.

Then we have

dzi = (zi+1 + αi + Fi(y
[i]
d , χa, η[i])) dt(4.44)

+Si(y
[i−1]
d , χa, η[i−1])χb dt + Ψi(y

[i−1]
d , χa, η[i−1]) dw,

where

Fi = gi(y, χa) −
i−1∑
j=1

∂αi−1

∂ηj
(ηj+1 + gj(y, χa)) −

∂αi−1

∂χa
(Waχa + Fa(y))

−
i−1∑
j=0

∂αi−1

∂y
(j)
d

y
(j+1)
d − 1

2
Tr

⎛⎜⎜⎜⎜⎝ ∂2αi−1

∂([χ�
a , η

�
[i−1]]

�)2

⎡⎢⎢⎢⎣
Φa

ĥ1

...

ĥi−1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Φa

ĥ1

...

ĥi−1

⎤⎥⎥⎥⎦
�⎞⎟⎟⎟⎟⎠,

Si = di −
i−1∑
j=1

∂αi−1

∂ηj
dj −

∂αi−1

∂χa
La,

Ψi = ĥi(y) −
i−1∑
j=1

∂αi−1

∂ηj
ĥj(y) −

∂αi−1

∂χa
Φa(y)

all are smooth functions.
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Now we introduce the value function for this step as follows:

Vi = Vi−1 + Ξi(y
[i−1]
d , χa, z[i−1])z

2
i ,(4.45)

where Ξi is a positive smooth weighting function to be determined below in this step.
By (4.39) and (4.44), we have

dVi = dVi−1 + 2ziΞi(zi+1 + αi + Fi + Siχb) dt + z2
i

i−1∑
j=0

∂Ξi

∂y
(j)
d

y
(j+1)
d dt

+ z2
i

(
∂Ξi

∂χa
(Waχa + Fa + Laχb) +

i−1∑
j=1

∂Ξi

∂zj
(zj+1 + αj + Fj + Sjχb)

)
dt(4.46)

+
1

2
Tr

⎛⎜⎜⎜⎜⎝ ∂2(Ξiz
2
i )

∂([χ�
a , z

�
[i]]

�)2

⎡⎢⎢⎢⎣
Φa

Ψ1

...
Ψi

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Φa

Ψ1

...
Ψi

⎤⎥⎥⎥⎦
�⎞⎟⎟⎟⎟⎠ dt

+ 2ΞiziΨi dw + z2
i

(
∂Ξi

∂χa
Φa +

i−1∑
j=1

∂Ξi

∂zj
Ψj

)
dw

≤ −z2
1 dt + σi(y

[i−1]
d , χ, z[i]) dw − θ

4
σiσ

�
i dt +

θ

4
(σiσ

�
i − σi−1σ

�
i−1) dt

−βiΞiz
2
i dt + βiΞiz

2
i dt− ri−1(yd) ‖χ‖2

(c + χ�Pχ)1−γ
dt

−
i−1∑
j=1

Ξj

(
βj − 2

i−1∑
m=j+1

(m− 1)κm

)
z2
j dt− Δi−1 dt

+ 2ziΞi

(
zi+1 + αi + F i(y

[i]
d , χa, z[i])

)
dt + ziMi(y

[i−1]
d , χa, z[i])χb dt

+Ci−1 dt +
1

2
Tr

⎛⎜⎜⎜⎜⎝ ∂2(Ξiz
2
i )

∂([χ�
a , z

�
[i]]

�)2

⎡⎢⎢⎢⎣
Φa

Ψ1

...
Ψi

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Φa

Ψ1

...
Ψi

⎤⎥⎥⎥⎦
�⎞⎟⎟⎟⎟⎠ dt,

where

σi = σi−1 + 2ΞiziΨi + z2
i

∂Ξi

∂χa
Φa + z2

i

i−1∑
j=1

∂Ξi

∂zj
Ψj ,

F i = Fi +
Ξi−1

Ξi
zi−1 +

zi
2Ξi

(
i−1∑
j=0

∂Ξi

∂y
(j)
d

y
(j+1)
d

+

i−1∑
j=1

∂Ξi

∂zj
(zj+1 + αj + Fj) +

∂Ξi

∂χa
(Waχa + Fa)

)
,

Mi = 2ΞiSi + zi

i−1∑
j=1

∂Ξi

∂zj
Sj + zi

∂Ξi

∂χa
La
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all are smooth functions. Here, we have used the technique of subtracting and adding
terms θ

4σiσ
�
i dt and βiΞiz

2
i dt to the right-hand side of inequality (4.46).

Let σi−1(y
[i−2]
d , χ, z[i−1])= σi−1−∂V0

∂χ Φ =
∑i−1

j=1(2ΞjzjΨj+z2
j
∂Ξj

∂χa
Φa+ z2

j

∑j−1
k=1

∂Ξj

∂zk

Ψk). Then by noticing that σi−1 is independent of χb, we have

(4.47)

−Δi−1, 1 +
θ

4
(σiσ

�
i − σi−1σ

�
i−1)

= −θε2
11

∥∥∥∥∥
(
∂V0

∂χ

)�
− 1

2ε2
11

i−1∑
j=1

ΞjΦΓ�
j zj

∥∥∥∥∥
2

+ θΞiσi−1Γ
�
i zi + θΞ2

iΓiΓ
�
i z

2
i

= −θε2
11

∥∥∥∥∥
(
∂V0

∂χ

)�
− 1

2ε2
11

i−1∑
j=1

ΞjΦΓ�
j zj

∥∥∥∥∥
2

+ θΞi
∂V0

∂χ
ΦΓ�

i zi + θΞi(σi−1 + ΞiΓizi)Γ
�
i zi

= −θε2
11

∥∥∥∥∥
(
∂V0

∂χ

)�
− 1

2ε2
11

i−1∑
j=1

ΞjΦΓ�
j zj

∥∥∥∥∥
2

+

(
θ

(
∂V0

∂χ
− 1

2ε2
11

i−1∑
j=1

ΞjΓjΦ
�zj

)
ΞiΦΓ�

i zi −
θ

4ε2
11

Ξ2
iΓiΦ

�ΦΓ�
i z

2
i

)

+
θ

4ε2
11

Ξ2
iΓiΦ

�ΦΓ�
i z

2
i +

θ

2ε2
11

i−1∑
j=1

ΞjΓjΦ
�zjΞiΦΓ�

i zi

+ θΞi(σi−1 + ΞiΓizi)Γ
�
i zi

= −Δi1 + θΞi

(
1

4ε2
11

ΞiΓiΦ
�Φzi

+
1

2ε2
11

i−1∑
j=1

ΞjΓjΦ
�Φzj + σi−1 + ΞiΓizi

)
Γ�
i zi,

where

Γi(y
[i−1]
d , χa, z[i]) = Ψi +

zi
2Ξi

∂Ξi

∂χa
Φa +

zi
2Ξi

i−1∑
j=1

∂Ξi

∂zj
Ψj ,

Δi1(y
[i−1]
d , χ, z[i]) = θε2

11

∥∥∥∥∥
(
∂V0

∂χ

)�
− 1

2ε2
11

i∑
j=1

ΞjΦΓ�
j zj

∥∥∥∥∥
2

.(4.48)

Similar to (4.25), by using (4.42) we have
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Miχbzi − Δi−1, 2(4.49)

=

(
i∑

k=1

Mkzk

)
χb −

ε
p1

p1−1

1 (p1 − 1)

p1
‖χb‖

p1
p1−1 −

∥∥∑i−1
j=1 M

�
j zj

∥∥p1

p1ε
p1

1

zp1

1

= −
(
ε

p1
p1−1

1 (p1 − 1)

p1
‖χb‖

p1
p1−1 +

∥∥∑i
j=1 M

�
j zj

∥∥p1

p1ε
p1

1

−
i∑

j=1

Mjzjχb

)

+
1

p1ε
p1

1

(∥∥∥∥∥
i−1∑
j=1

M�
j zj + M�

i zi

∥∥∥∥∥
p1

−
∥∥∥∥∥

i−1∑
j=1

M�
j zj

∥∥∥∥∥
p1
)

= −Δi2 + Υi,

where

Δi2(y
[i−1]
d , χb, z[i]) =

(p1 − 1)ε
p1

p1−1

1

p1
‖χb‖

p1
p1−1 +

1

p1ε
p1

1

∥∥∥∥∥
i∑

j=1

M�
j zj

∥∥∥∥∥
p1

(4.50)

−
i∑

j=1

Mjzjχb,

Υi(y
[i−1]
d , χa, z[i]) =

1

p1ε
p1

1

(∥∥∥∥∥
i−1∑
j=1

M�
j zj + M�

i zi

∥∥∥∥∥
p1

−
∥∥∥∥∥

i−1∑
j=1

M�
j zj

∥∥∥∥∥
p1
)
.

By Young’s inequality, it is easy to see that Δi2 ≥ 0. And similar to (4.43), there

exists a smooth function Υi(y
[i−1]
d , χa, z[i]) such that

Υi = ziΥi(y
[i−1]
d , χa, z[i]).

By assumptions A1 and A3, we know that there exist vector-valued smooth func-

tions Ψi(y
[i−1]
d , χa, η[i−1]) and Ψij(y

[i−1]
d , χa, z[j]), j = 1, . . . , i− 1, such that

Ψi(y
[i−1]
d , χa, η[i−1]) = Ψi(y

[i−1]
d , χa, z[i−1])

= Ψi(y
[i−1]
d , χa,0(i−1)×1) +

i−1∑
j=1

Ψij(y
[i−1]
d , χa, z[j])zj .

Then, for the last term on the right-hand side of (4.46), we have

(4.51)

1

2
Tr

⎛⎜⎜⎜⎜⎝ ∂2(Ξiz
2
i )

∂([χ�
a , z

�
[i]]

�)2

⎡⎢⎢⎢⎣
Φa

Ψ1

...
Ψi

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Φa

Ψ1

...
Ψi

⎤⎥⎥⎥⎦
�⎞⎟⎟⎟⎟⎠

=
1

2
Tr

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣

∂2Ξi

∂([χ�
a , z

�
[i−1]]

�)2
z2
i 2

(
∂Ξi

∂[χ�
a , z

�
[i−1]]

�

)�

zi

2
∂Ξi

∂[χ�
a , z

�
[i−1]]

� zi 2Ξi

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Φa

Ψ1

...
Ψi

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Φa

Ψ1

...
Ψi

⎤⎥⎥⎥⎦
�⎞⎟⎟⎟⎟⎠
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=
1

2
Tr

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣

∂2Ξi

∂([χ�
a , z

�
[i−1]]

�)2
zi 2

(
∂Ξi

∂[χ�
a , z

�
[i−1]]

�

)�

2
∂Ξi

∂[χ�
a , z

�
[i−1]]

� 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Φa

Ψ1

...
Ψi

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Φa

Ψ1

...
Ψi

⎤⎥⎥⎥⎦
�⎞⎟⎟⎟⎟⎠ zi

+ Ξi

⎛⎝Ψi(y
[i−1]
d , χa, 0(i−1)×1) +

i−1∑
j=1

Ψij(y
[i−1]
d , χa, z[j])zj

⎞⎠

×

⎛⎝Ψi(y
[i−1]
d , χa, 0(i−1)×1) +

i−1∑
j=1

Ψij(y
[i−1]
d , χa, z[j])zj

⎞⎠�

≤ 1

2
Tr

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣

∂2Ξi

∂([χ�
a , z

�
[i−1]]

�)2
zi 2

(
∂Ξi

∂[χ�
a , z

�
[i−1]]

�

)�

2
∂Ξi

∂[χ�
a , z

�
[i−1]]

� 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Φa

Ψ1

...
Ψi

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Φa

Ψ1

...
Ψi

⎤⎥⎥⎥⎦
�⎞⎟⎟⎟⎟⎠ zi

+ 2Ξi

∥∥∥(Ψi(y
[i−1]
d , χa, 0(i−1)×1))

�
∥∥∥2

+ 2(i− 1)Ξi

i−1∑
j=1

Ξ−1
j

∥∥∥(Ψij(y
[i−1]
d , χa, z[j]))

�
∥∥∥2

Ξjz
2
j .

Choose

(4.52)

Ξi =
κi

1 +
∥∥(Ψi(y

[i−1]
d , χa, 0(i−1)×1))�

∥∥2
+
∑i−1

j=1 Ξ−1
j

∥∥(Ψij(y
[i−1]
d , χa, z[j]))�

∥∥2 .

Then we have

2Ξi

∥∥(Ψi(y
[i−1]
d , χa, 0(i−1)×1))

�∥∥2 ≤ 2κi,

2(i− 1)Ξi

i−1∑
j=1

Ξ−1
j

∥∥(Ψij(y
[i−1]
d , χa, z[j]))

�∥∥2
Ξjz

2
j ≤ 2(i− 1)κi

i−1∑
j=1

Ξjz
2
j .

By substituting (4.47)–(4.52) into (4.46), we get

dVi ≤ −z2
1 dt + σi dw − θ

4
σiσ

�
i dt− ri(yd)

‖χ‖2

(c + χ�Pχ)1−γ
dt(4.53)

−
i∑

j=1

Ξj

(
βj − 2

i∑
m=j+1

(m− 1)κm

)
z2
j dt− Δi(y

[i−1]
d , χ, z[i]) dt

+ 2Ξizizi+1 dt + 2ziΞi(αi − αi(y
[i]
d , χa, η[i])) dt

+Ci(y
[i]
d , χa, z[i−1]) dt,
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where

(4.54)

ri = ri−1(yd), with ri−1 being defined by (4.40),

Δi = Δi1 + Δi2, with Δi1 and Δi2 being defined by (4.48) and (4.50), respectively,

Ni(y
[i]
d , χa, z[i]) = F i +

Υi

2Ξi
+

βizi
2

+
θ

2

(
1

4ε2
11

ΞiΓiΦ
�Φzi +

1

2ε2
11

i−1∑
j=1

ΞjΓjΦ
�Φzj + σi−1 + ΞiΓizi

)
Γ�
i

+
1

4Ξi
Tr

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎣

∂2Ξi

∂([χ�
a , z

�
[i−1]]

�)2
zi 2

(
∂Ξi

∂[χ�
a , z

�
[i−1]]

�

)�

2
∂Ξi

∂[χ�
a , z

�
[i−1]]

� 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Φa

Ψ1

...
Ψi

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Φa

Ψ1

...
Ψi

⎤⎥⎥⎥⎦
�⎞⎟⎟⎟⎟⎠,

αi =
{
−Ni(y

[i]
d , χa, z[i])

}∣∣
zj=ηj−αj−1, j=1,...,i

,

Ci = Ci−1 + 2Ξi

∥∥∥(Ψi(y
[i−1]
d , χa, 0(i−1)×1))

�
∥∥∥2

, Ci−1 is given by (4.41).(4.55)

Now, we choose virtual controller αi(y
[i]
d , χa, η[i]) as follows:

αi = αi(y
[i]
d , χa, η[i]).(4.56)

Substituting (4.56) into (4.53), we have

dVi ≤ −z2
1 dt + σi dw − θ

4
σiσ

�
i dt− ri(yd)

‖χ‖2

(c + χ�Pχ)1−γ
dt− Δi dt(4.57)

−
i∑

j=1

Ξj

(
βj − 2

i∑
m=j+1

(m− 1)κm

)
z2
j dt

+ 2Ξizizi+1 dt + Ci(y
[i]
d , χa, z[i]) dt.

This completes Step i.
Step ρ. It is easy to see that the results of Step i hold also for i = ρ, where

ηρ+1 = bmg(y)u. Define the value function Vρ as in (4.45) with i = ρ for this step.
Then, Vρ satisfies (4.57) with i = ρ. Set zρ+1 = 0. Then, we arrive at the controller

u(y
[ρ]
d , χa, η[ρ]) =

1

bmg(y)
αρ(y

[ρ]
d , χa, η[ρ]),(4.58)

where αρ is defined by letting i = ρ in (4.56). Let Vρ = Vρ−1 +Ξ(y
[ρ−1]
d , χa, z[ρ−1])z

2
ρ.

Then we have

dVρ ≤ −z2
1 dt + σρ(y

[ρ−1]
d , χa, z) dw − θ

4
σρσ

�
ρ dt(4.59)

− rρ(yd)
‖χ‖2

(c + χ�Pχ)1−γ
dt− Δρ(y

[ρ−1]
d , χ, z) dt

−
ρ∑

j=1

Ξj

(
βj − 2

ρ∑
m=j+1

(m− 1)κm

)
z2
j dt + Cρ(y

[ρ]
d , χa, z[ρ]) dt,
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where Ξρ, σρ, rρ, Δρ, and Cρ are defined in the same way as in Step i (i = 2, . . . , ρ−1),
with i being replaced by ρ.

So far, we have completed the entire backstepping design.

4.4. Properties of the design procedure. In this subsection, we give several
properties of the design procedure above. To avoid duplication of the expression, here
only the case of ρ > 1 is considered, since the case of ρ = 1 has the same properties.

By Lemmas B.1 and B.2, we have

rρ(yd)
‖χ‖2

(c + ξ)1−γ
≥ rρ(yd)

(λmax(P ))
1−γ ‖χ‖

2γ − rρ(yd)Mγ(c)(4.60)

≥ rρ(yd)

λmax(P )
((c + ξ)γ − cγ) − rρ(yd)Mγ(c)

=
rρ(yd)

δλmax(P )
φ(ξ) − rρ(yd)Mγ(c),

where rρ(yd) = r1(yd) is defined by (4.54) and ξ and φ(ξ) are defined in (4.10).

Define

r(yd) =
rρ(yd)

δλmax(P )
,(4.61)

βi = βi − 2

ρ∑
j=i+1

(j − 1)κj , i = 1, . . . , ρ,(4.62)

C(y
[ρ]
d , χa, z[ρ]) = Cρ + rρ(yd)Mγ(c).(4.63)

Then, by (4.59) (or (4.35) for the case of ρ = 1) and (4.60)–(4.63), we have

dVρ ≤ σρ dw − θ

4
σρσ

�
ρ dt− z2

1 dt− r φ(ξ) dt−
ρ∑

i=1

Ξiβiz
2
i dt− Δρ dt + C dt.(4.64)

The following lemma presents the method specifying the design constants.

Lemma 4.2. For any given cost value Rl > 0, risk-sensitivity parameter θ > 0,
and characteristic parameter γ ∈ ( 1

2 , 1), there always exist positive design constants
δ, c, ε01, ε02, ε03, ε04, ε1, ε11, β1, . . . , βρ, κ1, . . . , κρ, such that the following inequalities
hold:

rρ ≥ r > 0, β1 > 0, . . . , βρ > 0, and Cρ ≤ Rl,(4.65)

where r is constant.

Proof. The proof can be accomplished by properly selecting a set of design con-
stants.

Design constants δ, ε01, and ε02 are chosen such that

0 < δ ≤ 1,(4.66)

0 < ε01 <

√
2

4
,(4.67)

0 < ε02 <

√
2

4
.(4.68)
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For given γ ∈ ( 1
2 , 1), even numbers p ∈ {2, 4, 6, . . .} and p1 ∈ {4, 6, 8, . . .} are chosen

such that

p1

2(p1 − 1)
≤ γ ≤ p

p + 1
.

For example, when γ = 2
3 , even numbers p ≥ 2 and p1 ≥ 4 are proper; when γ = 4

5 ,
then even numbers p ≥ 4 and p1 ≥ 4 are proper; when γ = 3

5 , then even numbers
p ≥ 2 and p1 ≥ 6 are proper.

Then, for given γ ∈ ( 1
2 , 1), risk-sensitivity parameter θ, desired positive risk-

sensitive cost value Rl, given output yd, selected δ, ε01, p, and p1, and design constants
ε03, ε04, c, and ε1 are chosen such that

0 < ε03 <

(
pλ

1
p−1

min (P )

12θδγ(p− 1)‖P‖2

) p−1
p

,(4.69)

0 < ε04 <

√
1

18θδγ
,(4.70)

(4.71)

c ≥ max

⎧⎨⎩1,

(
max

{
5δγ max|yd|≤Cyd

‖PF (yd)‖2

Rlε2
01

, 12θδγ max
|yd|≤Cyd

(
‖PΦ(yd)‖2

F

)
,

10δγ max|yd|≤Cyd
Tr
(
PΦ(yd)Φ

�(yd)
)

Rl

}) 1
1−γ

⎫⎬⎭ ,

0 < ε1 < δ

⎛⎝min

{
p1Rl

5(p1 − 1)(1 + K( p1

p1−1 , 2γ))
,

p1Rl

5(p1 − 1)λ1−γ
max(P )Mγ(c)

,(4.72)

γp1

8(p1 − 1)λ1−γ
max(P )

}⎞⎠
p1−1

p1

.

For given γ and selected constants c and δ, constant ε11 is chosen such that

0 < ε11 <

√
c1−γ

16θδγ‖P‖2
.(4.73)

Design constants κ1, . . . , κρ are chosen such that

0 < κi = min

{
1,

Rl

10ρ

}
, i = 1, . . . , ρ.(4.74)

For given κi’s, design constants β1, . . . , βρ are chosen such that

βi > 2

ρ∑
m=i+1

(m− 1)κm, i = 1, . . . , ρ.(4.75)

Thus, by (4.54) with i = ρ, (4.29), (4.18), (4.67)–(4.73), we have rρ(yd) > 1
8δγ > 0;

by (4.62) and (4.75) we have β1 > 0, . . . , βρ > 0; by (4.59) (or (4.35) for the case of
ρ = 1), (4.32), (4.19), (4.67), (4.71), (4.72), and (4.75), we have Cρ ≤ Rl.
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For the value function Vρ, we have the following lemma.
Lemma 4.3. There are positive definite, continuous, and radially unbounded

functions W1(χ, z) and W2(χ, z) such that

W1(χ, z) ≤ Vρ(y
[ρ−1]
d , χ, z) ≤ W2(χ, z).(4.76)

Proof. Define

W1(χ, z) = V0(χ) +

ρ∑
i=1

min
|yd|≤Cyd

,...,|y(i−1)

d
|≤C

y
(i−1)

d

Ξi(y
[i−1]
d , χa, z[i−1])z

2
i ,

W2(χ, z) = V0(χ) +

ρ∑
i=1

max
|yd|≤Cyd

,...,|y(i−1)

d
|≤C

y
(i−1)

d

Ξi(y
[i−1]
d , χa, z[i−1])z

2
i .

Then inequality (4.76) holds.
We now show that W1(χ, z) and W2(χ, z) are positive definite, continuous, and

radially unbounded. Clearly, W1 and W2 are continuous. In fact, based on W1(χ, z) ≤
W2(χ, z) and W2(0(n+m)×1, 0ρ×1) = 0, it suffices to show that so is W1(χ, z).

Let us next prove the positive definition and radial unboundedness of W1 by
induction. It is clear that V0(χ) is positive definite and radially unbounded by the
definition (4.10).

By the definition (4.27) of Ξ1, assumption A3, and the smoothness of ‖Ψ1‖2, we
see that min|yd|≤Cyd

Ξ1(yd) is existent and positive. Thus, V0(χ)+min|yd|≤Cyd
Ξ1(yd)z

2
1

is positive definite and radially unbounded.

Clearly, min|yd|≤Cyd
,|y(1)

d
|≤C

y
(1)

d

Ξ2(y
[1]
d , χa, z1) is positive and continuous with re-

spect to (χa, z1). Thus, by Lemma B.4 in Appendix B we can get the positive definite-
ness and radial unboundedness of V0(χ)+min|yd|≤Cyd

Ξ1(yd)z
2
1+min|yd|≤Cyd

,|y(1)

d
|≤C

y
(1)

d

Ξ2(y
[1]
d , χa, z1)z

2
2 .

Suppose that V0(χ) +
∑i−1

j=1 min|yd|≤Cyd
,...,|y(j−1)

d
|≤C

y
(j−1)

d

Ξj(y
[j−1]
d , χa, z[j−1])z

2
j

(i = 3, 4, . . . , ρ) is positive definite and radially unbounded. Then, from the positive-

ness and continuity of min|yd|≤Cyd
,...,|y(i−1)

d
|≤C

y
(i−1)

d

Ξi(y
[i−1]
d , χa, z[i−1]) and Lemma

B.4 in Appendix B, we obtain the positive definiteness and radial unboundedness of

V0(χ) +

i∑
j=1

min
|yd|≤Cyd

,...,|y(j−1)

d
|≤C

y
(j−1)

d

Ξj(y
[j−1]
d , χa, z[j−1])z

2
i .

Thus, by induction, W1(χ, z) is positive definite and radially unbounded.
The following two properties are largely straightforward.
Property 4.1. If the design constants are chosen such that inequalities (4.65)

hold, then we have

dVρ ≤ −(y − yd)
2 dt + σρ dw − θ

4
σρσ

�
ρ dt(4.77)

− l
(
y
[ρ−1]
d , χ, z[ρ]

)
dt + Rl dt + r(yd)Mγ(c)dt,

where l = r(yd)φ(ξ) +
∑ρ

i=1 Ξiβiz
2
i + Δρ is nonnegative.
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Proof. By (4.59) (or (4.35) for the case of ρ = 1) and (4.65) one can easily get
(4.77).

Property 4.2. If design constants are chosen such that inequalities (4.65) hold,
then

LVρ ≤ −z2
1 + Rl,(4.78)

LVρ ≤ −c1Vρ + c2,(4.79)

where constants c1 and c2 satisfy{
c1 = min

{
r

δλmax(P ) , β1, β2, . . . , βρ

}
> 0,

c2 = Rl + maxyd
rρ(yd)Mγ(c).

(4.80)

Proof. When design constants are chosen such that inequalities (4.65) hold, then
(4.78) comes from (4.77), and (4.79) comes from (4.61)–(4.64), Vρ = φ(ξ)+

∑ρ
i=1 Ξiz

2
i ,

and

r(yd) ≥ c1, β1 ≥ c1, . . . , βρ ≥ c1, and C ≤ c2.

5. Main results. In this section, we summarize the main results of this paper
as a theorem.

Theorem 5.1. Consider the system (3.1) and the tracking risk-sensitive cost
criterion (3.2). Suppose that assumptions A1–A3 hold. Then, for any given risk-
sensitivity parameter θ > 0 and desired cost value Rl > 0, there exists an output-
feedback controller such that the closed-loop system

1. has a unique solution on [0, ∞) almost surely,
2. admits a guaranteed cost value Rl for the risk-sensitive cost criterion (3.2),
3. is bounded in probability.

Proof. We prove this theorem only for the case of ρ > 1 by construction. The
proof for the case ρ = 1 is similar and straightforward, and so is omitted here.

For any given risk-sensitivity parameter θ > 0 and desired cost value Rl > 0,
section 4 provides a constructive design procedure of an output-feedback risk-sensitive
controller. From Lemma 4.2, it is easily known that there are design constants such
that inequalities (4.65) hold. Then, Lemma 4.3, (4.59), and the first two statements
of Theorem A.1 imply statements 1 and 2.

Property 4.2, together with the third statement of Theorem A.1, leads directly to
the boundedness in probability of [χ�, z�[ρ]]

�. To show statement 3, let us first show

the boundedness in probability of [η1, . . . , ηρ]
�.

By η1 = y = z1 + yd and assumption A3, it is easy to see that η1 is bounded
in probability. Suppose that [η1, . . . , ηk−1]

� is bounded in probability for k (k =

2, . . . , ρ). Then by ηk = zk + αk−1(y
[k−1]
d , χa, η[k−1]), the smoothness of αk−1, and

assumption A3, we know that ηk, and hence [η1, . . . , ηk]
�, is bounded in probability.

Therefore, by induction, [η1, . . . , ηρ]
� is bounded in probability.

Thus, by [η1, . . . , ηρ, ζ
�]� = Tρ, . . . , T1[y, x̂2, . . . , x̂n]� and χ = [ζ�, x̃�]�, it is

easy to derive that x̃ and [y, x̂2, . . . , x̂n]� are bounded in probability. This, together
with y = x1, x̂1 = y − x̃1, and [x2, . . . , xn]� = [x̃2 + x̂2, . . . , x̃n + x̂n], leads to the
boundedness in probability of [x�, x̂�]�. That is, statement 3 is true.

Remark 5.1. As for the value range of characteristic parameter γ in value function
Vρ (or V0 given by (4.10)), the following two points are considered. First, since
χb is unknown, in order to guarantee stability of the closed-loop system, we use
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− r0(yd)‖χ‖2

(c+χ�Pχ)1−γ dt to dominate the term M1χbz1 dt on the right-hand side of (4.22).

This requires that the power 2γ of χb (or χ) in the term r0(yd)‖χ‖2

(c+χ�Pχ)1−γ dt on the right-

hand side of (4.22) be greater than 1, the power of χb of M1χbz1 dt, that is, γ > 1/2.
Second, to deal with the term σ0 dw on the right-hand side of (4.13), we use the
technique of subtracting and adding θ

4σ0σ
�
0 dt on the right-hand side of (4.13). The

negative term − θ
4σ0σ

�
0 dt is used to control the term σ0 dw, while the positive term

θ
4σ0σ

�
0 dt is dominated by term −∂φ

∂ξ ‖χ‖2 dt and the system input. Thus, it is natural

to require that the power 2γ of χ in ∂φ
∂ξ ‖χ‖2 be greater than 4γ − 2, the power of χ

in σ0σ
�
0 ; that is, 2γ > 4γ − 2, or equivalently, γ < 1.

6. Example. Consider the second-order system

dx1 = x2dt + udt +
1

2
y2dw,

dx2 = u dt,
y = x1.

The purpose is to design u based on only y such that the output y of the closed-loop
system tracks the sinusoidal signal:

yd(t) = a sin(ωt), a = 2, ω = 2.

Clearly, in this case, we have n = 2, m = 1, ρ = 1, and h(y) = [12y
2, 0]�.

Design the following state observer:

˙̂x1 = x̂2 + k1(y − x̂1) + u, k1 = 1,
˙̂x2 = k2(y − x̂1) + u, k2 = 1.

Then, the estimation error x̃ = [x1 − x̂1, x2 − x̂2]
� satisfies the following equation:

dx̃ =

[
−1 1
−1 0

]
x̃dt + h(y)dw

�
= Ax̃dt + h(y)dw.

Set ς0 = [y, x̂2]
�. Then we have the following dynamical equation for ς0:

dς0 =

[
0 1
0 0

]
ς0dt +

[
0
x̃1

]
dt +

[
1
0

]
x̃2dt +

[
1
1

]
u dt +

[
1
2y

2

0

]
dw.

Let ς1 = T1ς0, T1 =
[

1 0
−1 1

]
, T−1

1 =
[

1 0
1 1

]
. Then we have

dς1 =

[
1 1
−1 −1

]
ς1dt +

[
0
x̃1

]
dt +

[
1
−1

]
x̃2dt +

[
1
0

]
u dt +

[
1
2y

2

− 1
2y

2

]
dw.

Let η = [η1, η2]
� = ς1 and ζ = η2. Then we have η1 = y and the following dynamics

used to control design:

dx̃ = Ax̃dt + h(y)dw,

dζ = (−ζ − y + x̃1 − x̃2)dt−
1

2
y2 dw,

dy = (ζ + y + u + x̃2)dt +
1

2
y2 dw.
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In this case, we have

W =

⎡⎣ −1 1 −1
0 −1 1
0 −1 0

⎤⎦.
By solving Lyapunov equation W�P + PW = −I3, we get

P =

⎡⎣ 0.5000 0.3333 −0.1667
0.3333 1.5000 −0.6667
−0.1667 −0.6667 1.6667

⎤⎦.
Clearly, P is symmetric and positive definite. The eigenvalues of P are 0.3978, 0.9476,
2.3213, and thus, λmin(P ) = 0.3978, λmax(P ) = 2.3213.

Let γ = 2
3 , p = 2, p1 = 4, z1 = y−yd, χa = [ζ, x̃1]

�, ξa = χ�
a (P1−P2P

−1P�
2 )χa =

0.4833ζ2 + 1.2333x̃2
1 + 0.5332ζx̃1. Then we design the controller u(y

[1]
d , χa, η1) =

α1(y
[1]
d , χa, η1) as follows:

α1 =

{
−N1 −

z1

2Ξ1
− N0

2Ξ1

}∣∣∣∣
z1=η1−yd

with Ξ1 = 4κ1

4+y4
d

and

N0 =
0.2593δ

ε2
02

· 1

(c + ξa)
1
3

+
4θδ2

9
· (y + yd)

2(0.5834x̃1 − 0.0833ζ)2z1

(c + ξa)
2
3

+
3.2261θδ2

ε2
04

·
(ζ2 + x̃2

1)
(
2y4

d + z2
1(y + yd)

2
)
(y + yd)

2z1

c + ξa

+
0.2993θδ2

ε2
03

· (y + yd)
2(y2 + y2

d)
2z1 +

δ

3
· (y + yd)

2z1

(c + ξa)
1
3

,

N1 = ζ − ẏd +
β1

2
z1 +

z1

2Ξ1

∂Ξ1

∂yd
ẏd +

2

ε4
1

Ξ3
1z

3
1 +

θ

8
Ξ1

(
1 +

y4

8ε2
11

)
y4z1

+
1

4
(y + yd)

2z1.

Here, the desired cost value Rl is set to 0.5. Accordingly, the design constants in
Lemma 4.2 are chosen as δ = 0.9, θ = 0.2, ε01 = 0.3, ε02 = 0.3, ε03 = 0.32, ε04 =
0.68, c = 100, ε1 = 0.1, ε11 = 0.29, κ1 = 0.05, β1 = 40; the stochastic disturbance
dw
dt is chosen to be Gaussian white noise with power 1; and the initial conditions are
simply set to x1(0) = 0.8, x2(0) = 0, x̂1(0) = 0, x̂2(0) = 0.

The simulation results are shown in Figures 1–4 given below. In particular, Fig-
ure 1 is about x1 (solid line) and its estimation x̂1 (dashdotted line); Figure 2 is
about x2 (solid line) and its estimation x̂2 (dashdotted line); Figure 3 is about de-
sired output yd (solid line), system output y (dashdotted line), and tracking error
y − yd (dashed line); Figure 4 is about control input u; Figure 5 gives a diagram of
1
t

∫ t

0
(y(s) − yd(s))

2ds, used to demonstrate the validity of the design. From Figure 3
and Figure 5 we can see that the system output tracks the desired output ideally.
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Fig. 1. System state x1 (solid) and observer state x̂1 (dashdotted).
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Fig. 2. System state x2 (solid) and observer state x̂2 (dashdotted).
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Fig. 3. Desired output yd (solid), system output y (dashdotted), and tracking error y − yd
(dashed).
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Fig. 4. Control input u.
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Fig. 5. 1
t

∫ t

0
(y(s) − yd(s))2ds.

7. Concluding remarks. In this paper, the practical output-feedback control
design problem of stochastic nonlinear strict-feedback systems in observer canonical
form with stable zero-dynamics under a long-term tracking risk-sensitive cost criterion
is investigated. A state observer is designed to guarantee an exponentially convergent
state estimate when there is no disturbance. By introducing a state-transformation,
we transform the system with the state observer in the loop into a lower triangular
structure. And then, for any given risk-sensitivity parameter and desired cost value,
by using an integrator backstepping method, we present constructively the output-
feedback control design algorithm. The cost function adopted here is of quadratic form
usually encountered in practice, rather than the quartic one used to avoid difficulty on
controller design and performance analysis of the closed-loop systems. It is shown that
under our control design (a) the closed-loop system is bounded in probability, and (b)
the long-term average risk-sensitive cost of the closed-loop systems is upper bounded
by the desired value. Besides, the value range of the characteristic parameters of the
value function is investigated. As a special case when system vector nonlinearity and
stochastic disturbance vector field vanish at the desired output yd, it can be expected
that there exists a control such that the closed-loop system is asymptotically stable
in the large and admits a zero risk-sensitive cost. This question is now under study.
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Appendix A. Preliminary results. In this appendix, we give the definitions of
bounded in probability and asymptotically stable in the large, as well as a key theorem
to present the sufficient conditions for these two stability notions.

For a general control-free stochastic nonlinear system,

dx = f(t, x) dt + h(t, x)dw, x(t0) = x0,(A.1)

where x is an n-dimensional state vector, n ∈ N; f : [0, ∞) × R
n → R

n and
h : [0, ∞) × R

n → R
n×s, s ∈ N, are assumed to be continuous in t and locally

Lipschitz in x; w is an s-dimensional vector-valued Brownian motion defined on a
probability space (Ω, F , P); t0 ≥ 0 and x0 ∈ R

n. Denote the solution to (A.1) by
xt0,x0

(t).
Definition A.1. The solution process {xt0,x0(t), t ≥ t0} is said to be bounded

in probability if

lim
ε→∞

sup
t∈[t0,∞)

P {‖xt0,x0(t)‖ > ε} = 0.

Definition A.2. Consider the system (A.1), with f(t,0n×1) = 0n×1 and
h(t,0n×1) = 0n×s ∀t ≥ 0. The identically zero solution process is said to be asymp-
totically stable in the large if ∀ε > 0, t0 ∈ [0, ∞),

lim
‖x0‖→0+

P
{

sup
t≥0

‖xt0,x0
(t)‖ ≥ ε

}
= 0

and ∀x0 ∈ R
n, ∀t0 ∈ [0, ∞),

P
{

lim
t→∞

xt0,x0(t) = 0n×1

}
= 1.

The following theorem gives the sufficient conditions for the above two stochastic
stability concepts.

Theorem A.1. Consider stochastic nonlinear system (A.1) and the following
risk-sensitive cost criterion:

Jθ = lim sup
T→∞

1

T

2

θ
ln

(
E

(
exp

(
θ

2

∫ T

0

q(t, x0,x0
(t)) dt

)))
,(A.2)

where θ > 0 is the risk-sensitive parameter and q : [0, ∞)×R
n → R is a nonnegative

continuous function. For any θ > 0 and any desired cost value Rl > 0, if there exists
a nonnegative value function V : [0, ∞)×R

n → R, which is C1 in the first argument
and C2 in the second argument; a continuous function σ : [0, ∞) × R

n → R
1×s; a

nonnegative continuous function l : [0, ∞)×R
n → R; and a nonnegative, continuous,

and radially unbounded function W1 : R
n → R such that

W1(x) ≤ V (t, x) ∀(t, x) ∈ [0, ∞) × R
n,(A.3)

dV (t, x) = σ(t, x) dw − θ

4
σ(t, x)(σ(t, x))� dt− l(t, x) dt(A.4)

− q(t, x) dt + Rl dt ∀(t, x) ∈ [0, ∞) × R
n,

then the following statements hold:
1. The system (A.1) has a unique solution on [t0, ∞) almost surely ∀t0 ≥ 0.
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2. Jθ(x0) ≤ Rl ∀x0 ∈ R
n.

3. If, in addition, there are constants cl1 ∈ (0, ∞) and cl2 ∈ (0, ∞) such that

LV (t, x) ≤ −cl1V (t, x) + cl2 ∀(t, x) ∈ [0, ∞) × R
n,(A.5)

then the solution of system (A.1) is bounded in probability.
4. If, in addition, f(t, 0n×1) = 0n×1, h(t, 0n×1) = 0n×s ∀t ≥ 0, W1 is positive

definite, Rl = 0, and there exist a continuous and positive definite function
W2 : R

n → R and a positive definite function W3 : R
n → R such that

V (t, x) ≤ W2(x) ∀(t, x) ∈ [0, ∞) × R
n,(A.6)

θ

4
σ(t, x)(σ(t, x))�+ l(t, x)+ q(t, x)≥W3(x) ∀(t, x)∈ [0, ∞)×R

n,(A.7)

then the zero solution of the system (A.1) is asymptotically stable in the large.

Proof. Define V̂
�
= V + Rl. Clearly, V̂ is nonnegative and satisfies

LV̂ = −θ

4
σ(t, x)(σ(t, x))� − l(t, x) − q(t, x) + Rl ≤ V̂

and

lim
r→∞

inf
‖x‖>r

V̂ (t, x) ≥ lim
r→∞

inf
‖x‖>r

W1(x) = ∞ ∀t ∈ [0, ∞).

Then, by Theorem 4.1 of Chapter III of [21], statement 1 follows.
For statement 2, fix t0 = 0 and x0 ∈ R

n. By (A.4), we have

V (T, x0,x0(T )) +

∫ T

0

(q(t, x0,x0(t)) + l(t, x0,x0(t))) dt

≤ V (0, x0) +

∫ T

0

σ(t, x0,x0
(t)) dw

− θ

4

∫ T

0

σ(t, x0,x0(t))(σ(t, x0,x0(t)))
� dt + Rl T ∀T ≥ 0.

This implies that

1

T

2

θ
ln

(
E

(
exp

(
θ

2

∫ T

0

q(t, x0,x0(t)) dt

)))
≤ 1

T

2

θ
ln

(
E

(
exp

(
θ

2

(
V (T, x0,x0(T )) +

∫ T

0

(
q(t, x0,x0(t)) + l(t, x0,x0(t))

)
dt

))))
≤ V (0, x0)

T
+

1

T

2

θ
ln

(
E

(
exp

(
θ

2

(∫ T

0

σ(t, x0,x0
(t)) dw

− θ

4

∫ T

0

σ(t, x0,x0
(t))(σ(t, x0,x0

(t)))� dt

))))
+ Rl.

Let, ∀T ≥ 0,

ζ(T )
�
= exp

(∫ T

0

θ

2
σ(t, x0,x0(t)) dw − θ2

8

∫ T

0

σ(t, x0,x0(t))(σ(t, x0,x0(t)))
� dt

)
.
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Then ζ(T ) is a supermartingale (see [33]), and E(ζ(T )) ≤ E(ζ(0)) = 1 ∀T ≥ 0. Thus,
we have

Jθ(x0) ≤ lim sup
T→∞

(
V (0, x0)

T
+

1

T

2

θ
ln (E (ζ(T ))) + Rl

)
≤ Rl.

This establishes statement 2.
For statement 3, fix t0 ∈ [0, ∞) and x0 ∈ R

n. Let

α(c) = inf
‖x‖>c, x∈Rn

W1(x) ∀c ∈ [0, ∞).

Then, by (A.3) and (A.5), we have, for sufficiently large c ∈ [0, ∞) and any t ≥ t0,

P(‖xt0,x0(t)‖ > c) =

∫
Ω

I{‖xt0,x0 (t)‖>c}(ω)P(dω)

=

∫
Ω

I{‖xt0,x0 (t)‖>c}W1(xt0,x0(t))

W1(xt0,x0(t))
P(dω)

≤ E(W1(xt0,x0
(t)))

α(c)
≤ E(V (t, xt0,x0

(t)))

α(c)

≤ V (t0, x0) + cl2/cl1
α(c)

.

Since the fact that W1 is radially unbounded implies that α(c) → ∞ as c → ∞, then
statement 3 follows.

For statement 4, we note that V is clearly positive definite,

0 ≤ lim
x→0n×1

sup
t≥0

V (t, x) ≤ lim
x→0n×1

W2(x) = 0,

which implies that V has infinitesimal upper limit, LV (t, x) = − θ
4σ(t, x)(σ(t, x))�−

l(t, x) − q(t, x) ≤ −W3(x) ∀(t, x) ∈ [0, ∞) × R
n, which is negative definite, and

lim
R→∞

inf
‖x‖>R, x∈Rn

inf
t>0

V (t, x) ≥ lim
R→∞

inf
‖x‖>R, x∈Rn

W1(x) = ∞.

By Theorem 4.4 in Chapter V of [21], the zero solution of system (A.1) is asymptoti-
cally stable in the large.

Appendix B. Technical lemmas.

Lemma B.1. Let n ∈ N, P be an n × n-dimensional symmetric positive definite
matrix, γ ∈ ( 1

2 , 1),

Πγ(x, c) = ‖x‖2γλγ−1
max(P ) − (c + x�Px)γ−1‖x‖2 ∀x ∈ R

n, ∀c ∈ (0, ∞),

and

Mγ(c) = sup
x∈Rn

Πγ(x, c) ∀c ∈ (0, ∞).

Then Πγ(x, c) ≥ 0 ∀x ∈ R
n, ∀c ∈ (0, ∞); and Mγ is strictly increasing on (0, ∞);

and

lim
c→0+

Mγ(c) = 0, lim
c→+∞

Mγ(c) = +∞.
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Proof. Clearly, for any nonzero vector x ∈ R
n, we have

Π(x, c) > Π(x, 0) = 0 ∀c ∈ (0, ∞).

From this together with Π(0n×1, c) = 0 ∀c ∈ (0, ∞), it follows that Πγ(x, c) ≥ 0
∀x ∈ R

n, ∀c ∈ (0, ∞).
Let us next prove the properties of Mγ . From the definitions of λmax(P ) and

λmin(P ), it follows that for any nonzero vector x ∈ R
n,

λmin(P ) ≤ x�Px

‖x‖2
≤ λmax(P ).

Further, by γ < 1 we have for any nonzero vector x ∈ R
n,

Πγ(x, c) ≤ ‖x‖2γλγ−1
max(P ) − (c + λmax(P )‖x‖2)γ−1‖x‖2

= λγ−1
max(P )‖x‖2γ

(
1 −

(
1 +

c

λmax(P )‖x‖2

)γ−1)
=

λγ−1
max(P )‖x‖2γ(

1 + c
λmax(P )‖x‖2

)γ−1

((
1 +

c

λmax(P )‖x‖2

)1−γ

− 1

)

≤ λγ−1
max(P )‖x‖2γ

(
1 +

c(1 − γ)

λmax(P )‖x‖2
− 1

)
= c(1 − γ)λγ−2

max(P )‖x‖2(γ−1)

−→ 0 as ‖x‖ → ∞,

where we have used the following inequality: (1+a)r ≤ 1+ar ∀a ∈ [0, ∞), ∀r ∈ (0, 1).
Let

X0 = {x ∈ R
n : Px = λmax(P )x} .

Then it can be shown that for any constant c > 0,

Mγ(c) ≥ sup
x∈X0,‖x‖=1

Πγ(x, c) = λγ−1
max(P ) − (c + λmax(P ))γ−1 > 0.

Therefore, there is a nonzero x1 ∈ R
n at which Πγ(x, c) reaches its maximum. Fur-

thermore, we can show that x1 ∈ X0, since otherwise there would be x�
1 Px1 <

λmax(P )‖x1‖2. Take x0 ∈ X0 such that ‖x0‖ = ‖x1‖. Then,

Πγ(x0, c) = ‖x0‖2γλγ−1
max(P ) − (c + x�

0 Px0)
γ−1‖x0‖2

= ‖x0‖2γλγ−1
max(P ) − (c + λmax(P )‖x0‖2)γ−1‖x0‖2

= ‖x1‖2γλγ−1
max(P ) − (c + λmax(P )‖x1‖2)γ−1‖x1‖2

> ‖x1‖2γλγ−1
max(P ) − (c + x�

1 Px1)
γ−1‖x1‖2.

This contradicts the fact that x1 is the maximum point of Πγ(x, c).
Thus, there must be

Mγ(c) = sup
x∈Rn

Πγ(x, c) = sup
x∈X0

Πγ(x, c)

= sup
x∈X0

[
‖x‖2γλγ−1

max(P ) − (c + λmax(P )‖x‖2)γ−1‖x‖2
]
.
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In other words, the vector maximization problem has been transformed into a scalar
one in α of the following two-variable function f(α, c):

f(α, c) = αγλγ−1
max(P ) − (c + λmax(P )α)γ−1α.

That is, for any given c ≥ 0, we have

Mγ(c) = sup
α≥0

f(α, c).

Noticing that

∂f(α, c)

∂c
= (1 − γ)(c + λmax(P )α)γ−2α > 0 ∀α > 0, ∀c > 0,

we know that f(α, c) is a strictly increasing function of c for fixed α ∈ (0, ∞). It
can also be shown that Mγ(c) is strictly increasing; i.e., for any 0 < c1 < c2 there
is always 0 < Mγ(c1) < Mγ(c2) due to the following argument. Let αc1 maximize
f(α, c1), or Mγ(αc1 , c1) = f(αc1 , c1) = supα≥0 f(α, c1). Then by the monotonicity
of f(α, ·), we have

Mγ(c1) = f(αc1 , c1) < f(αc1 , c2) ≤ sup
α≥0

f(α, c2) = Mγ(c2).

Note that, ∀c ∈ (0, ∞) and ∀x ∈ R
n with x �= 0n×1,

Πγ(x, c) ≤ ‖x‖2γλγ−1
max(P ) − (c + λmax(P )‖x‖2)γ−1‖x‖2

=
‖x‖2γλγ−1

max(P )

(c + λmax(P )‖x‖2)1−γ

(
(c + λmax(P )‖x‖2)1−γ − λ1−γ

max(P )‖x‖2(1−γ)
)

=
‖x‖2γλγ−1

max(P )

(c + λmax(P )‖x‖2)1−γ

((
1 +

c

λmax(P )‖x‖2

)1−γ

λ1−γ
max(P )‖x‖2(1−γ)

−λ1−γ
max(P )‖x‖2(1−γ)

)
=

‖x‖2

(c + λmax(P )‖x‖2)1−γ

((
1 +

c

λmax(P )‖x‖2

)1−γ

− 1

)
<

‖x‖2

(c + λmax(P )‖x‖2)1−γ

c(1 − γ)

λmax(P )‖x‖2

=
c(1 − γ)(λmax(P ))−1

(c + λmax(P )‖x‖2)1−γ
.

Clearly, we have Πγ(0n×1, c) = 0 < c(1−γ)(λmax(P ))−1

(c)1−γ ∀c ∈ (0, ∞). Then,

Πγ(x, c) <
c(1 − γ)(λmax(P ))−1

(c + λmax(P )‖x‖2)1−γ
∀c ∈ (0, ∞), ∀x ∈ R

n.

This implies that, ∀c ∈ (0, ∞),

Mγ(c) = sup
x∈Rn

Πg(x, c) ≤ sup
x∈Rn

c(1 − γ)(λmax(P ))−1

(c + λmax(P )‖x‖2)1−γ
= cγ(1 − γ)(λmax(P ))−1.

Clearly, Mγ(c) > 0 ∀c ∈ (0, ∞). Moreover, we have

0 ≤ lim
c→0+

Mg(c) ≤ lim
c→0+

cγ(1 − γ)(λmax(P ))−1 = 0.
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We now show

lim
c→+∞

Mγ(c) = +∞,(B.1)

since otherwise, by the fact that Mγ(c) is strictly increasing in [0, ∞), limc→+∞ Mγ(c)

would be existent and finite. Let Υ = limc→+∞ Mγ(c). Then for c =
(
1 − 1

21−γ

)− 1
γ ·

(2λmax(P )Υ)
1
γ , we would have Mγ(c) ≥ f(cλ−1

max(P ), c) = 2Υ > Υ. This contradicts
Υ = limc→+∞ Mγ(c) and the fact that Mγ(c) is strictly increasing in [0,∞). Thus,
(B.1) is true.

Remark B.1. Lemma B.1 means that the difference between term ‖x‖2γλγ−1
max(P )

and term (c + x�Px)γ−1 ‖x‖2 is less than or equal to Mγ(c), which is arbitrarily
close to zero as constant c is.

Lemma B.2. Let n ∈ N, P ∈ R
n×n be symmetric and positive definite, c ∈ [0, ∞),

and γ ∈ ( 1
2 , 1). Define the function

Δγ(x, c) = (c + x�Px)γ − cγ − λγ
max(P )‖x‖2γ , ∀c ≥ 0, ∀x ∈ R

n.

Then we have

Δγ(x, c) ≤ 0 ∀x ∈ R
n, ∀c ≥ 0.(B.2)

Proof. Let z = ‖x‖2 and Δγ(z, c) = (c + λmax(P )z)γ − cγ − λγ
max(P )zγ . Then,

Δγ(z, c) ≥ Δγ(x, c)∀ c ≥ 0, and for any z > 0 and c ≥ 0,

∂Δγ(z, c)

∂z
=

γλmax(P )

(c + λmax(P )z)1−γ
− γλγ

max(P )

z1−γ

≤ γλγ
max(P )

(cλ−1
max(P ) + z)1−γ

− γλγ
max(P )

z1−γ
≤ 0.

This together with Δγ(0, c) = Δγ(0, c) = 0 gives (B.2).
Remark B.2. From Lemmas B.1 and B.2, we know that for any χ ∈ R

n+m there
exist the following inequalities:

‖χ‖2γ ≤ λ1−γ
max(P )

(
Mγ(c) +

‖χ‖2

(c + χ�Pχ)1−γ

)
,(B.3)

(c + χ�Pχ)γ − cγ ≤ λmax(P )

(
Mγ(c) +

‖χ‖2

(c + χ�Pχ)1−γ

)
.

Lemma B.3. For any given constants a1 and a2 satisfying 1 ≤ a1 ≤ a2, set
fa1, a2(x) = xa1 − xα2 ∀x ≥ 0, and{

K(a1, a2) = a2−a1

a2

(
a1

a2

) a1
a2−a1

if a1 < a2,

K(a1, a2) = 0 if a1 = a2.

Then

sup
x≥0

fa1, a2(x) = K(a1, a2).(B.4)

Proof. When 1 ≤ a1 < a2, by d
dxfa1, a2

(x) = a1x
a1−1 − a2x

α2−1 = 0, we see that

fa1, a2(x) achieves its maximum at xm = (a1

a2
)

1
a2−a1 . Substituting xm into fa1, a2(x)

leads to (B.4).
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When a2 = a1 ≥ 1, (B.4) is obvious since, in this case, fa1, a2
(x) ≡ 0 and

K(a1, a2) = 0.
Lemma B.4. For positive definite and radially unbounded functions V1 : R

m → R

and V2 : R → R, and a positive continuous function Ξ : R
m → R

+, m ∈ N, define
V (X, x) = V1(X) + Ξ(X)V2(x). Then, for any [X�, x]� �= 0(m+1)×1, V (X, x) > 0,

and in addition, if
√
‖X‖2 + x2 → ∞, V (X, x) → ∞. That is, V (X, x) is positive

definite and radially unbounded.
Proof. We first show the positive definiteness of V (X, x). From [X�, x]� �=

0(m+1)×1 we have either X �= 0m×1 or X = 0m×1 and x �= 0. If X �= 0m×1, then we
have V (X, x) ≥ V1(X) > 0. If X = 0m×1 and x �= 0, then by the positiveness of Ξ
we have V (0m×1, x) ≥ Ξ(0m×1)V2(x) > 0. Clearly, V (0m×1, 0) = 0. Thus, V (X, x)
is positive definite.

Let us next show the radial unboundedness of V (X, x) by contradiction. Suppose
there were a sequence of {Xk, xk, k ∈ N} satisfying limk→∞(‖Xk‖ + ‖xk‖) = ∞ and
a constant C > 0 such that V (Xk, xk) ≤ C < ∞ ∀k ∈ N. Then, there would be
V1(Xk) ≤ C ∀k ∈ N and Ξ(Xk)V2(xk) ≤ C ∀k ∈ N. Noticing the positive definiteness
and radial unboundedness of V1, one can show that there is a constant δ1(C) > 0 such
that

‖Xk‖ ≤ δ1(C) ∀k ∈ N.(B.5)

Let M = min‖X‖≤δ1(C) Ξ(X). Then, by the positiveness and continuity of Ξ we have

M > 0. Thus, V2(xk) ≤ C
M ∀k ∈ N. This together with the positive definiteness and

radial unboundedness of V2 in turn implies that there exists a constant δ2(C/M) > 0
such that

‖xk‖ ≤ δ2(C/M) ∀k ∈ N.(B.6)

From this and (B.5) we have ‖Xk‖ + ‖xk‖ ≤ δ1(C) + δ2(C/M) < ∞ ∀k ∈ N, which
contradicts limk→∞(‖Xk‖+‖xk‖) = ∞. Thus, V (X, x) is radially unbounded.
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